MODULE - |
COMPLEX VARIABLES

Complex number:

» The Real and Imaginary part of a complex number z= x + iy are X
and y respectively, and we write

Rez=xand Imz=y
» We may represent the complex number z in polar form:
Z=r[cosf+isinb]
» Where x= rcose, y= rsing ,r is called the absolute value and o is the

argument of Z.

Now
z=re"

\z\zr‘e”‘

z|=r and argz=0
» Geometrically|zjis the distance of the point z from the origin. For

any complex number

Z=X+1Y | I 0T
"1"
7 =yX*+y° L |
II',.."' f rsin®

L2
L (¥
r=x’+y’ R




> Distance between two points, Z; = X; + iy1 and Z, =X, + iy2

Now z; —z, = (X3 — X2) +1 (Y2 — Y1) isa complex number.

‘Zl_zz‘ :\/()(1_)(2)2 +(y1_y2)2

» Equations and inequalities of curves and regions in the
complex plane:

> Consider |z—z|=R ---(1)

» Where z = x+iy is any point and zog=xg+iyy is a fixed point, R is a

given real constant.

z-7|=R OR z-z,=Re“ 0<0<2rx

=% +(y=y, ) =R

(x=%) +(y-Yp) =R*--) 2 P
Equation (2) represents a circle C of radius R with the center at a
point (Xo, Yo). Hence equation (1) represents a circle C center at zo with
radius R in the complex plane

Consequently we have,
1. The inequality |z-z|<R holds for any point z inside C; ie. [z-%|<R

represents set of complex points lies inside C or interior points of C.
such a region is called a circular disk or more precisely open circular

disk or open set.




Note: If R is very small say 6>0 (no matter, how small but not zero)
then AR is called a nhd of the point z,.

2. The inequality |z-z|<R , holds for any z inside and on the C. such a
region is called circular disk or closed set [ |z—z|<R consists interior of
C and C itself].

3. The inequality |z-z|>Rrepresents exterior of the circle C.
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4. The inequality r, <|z—z,|<r,  represents a region between two
concentric circles C; and C, of radii r; and r, respectively. Where z; is
the center of circles. Such a region is called an open circular ring or

annular region.

5. Suppose zo = 0, then |z|=R represents a circle C of radius R with
center at the origin in the complex plane.



Consequently we have the following:

The equation |z|=1represents the unit circle of radius 1 with center at the
origin.

a) ‘z‘ <1 : represents the open unit disk.
b) \z\ <1 : represents the closed unit disk.

[Students become completely familiar with representations of curves and
regions in the complex plane]

Complex variable:

> If x and y are real variables, then z=x+iy is said to be a complex
variable.

Complex Function:

> If, to each value of a complex variable z in some region of the
complex plane or z-plane there corresponds one or more values of
W in a well defined manner, then W is a function of z defined in

that region (domain), and we write W=f(z).

Fegion or domain W=f{Z)
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Observation:
» The real and imaginary part of a complex function W = f(z)=u+iv
are uand v which are depends on:

I. Xy in Cartesian form.
ii. r, O inpolar form.

Limit:

A complex valued function f(z) is said to have the limit | as z approaches
to zp (except perhaps at zo) and if every positive real number €>0 (no
matter, how small but not zero) we can find a positive real number 6>0

such that [f(2)-I|<swhenever [z-z|<sforall values z=gr Jim f(2)=1(z)

open disk W=f(Z) open disk

7 - Plane W - Plane

> 2= 7% means that, z approaches to z, through independent of path.

Path ) abomg writh
W - axiEs, here st
takine X=— amd w—— =70

\\—A——ﬂ-.____ Pash - [. along with
- e o = - axis, here first
L

dakoime -0 amscl

- - : W o e

Both the Approaches gives ummcuoe wvaloe



Continuity of : A complex function W = f(z) is said to be continuous at

a point z, if

1) f(zo) is exists.
i) lim f(z)=f(z,)
Note: If f(z) is said to be continuous in any region R of the z-plane, if it

IS continuous at every point of that region.

Derivative of f(z):
A complex function f(z) is said to be differentiable at z=z; if lim M exists and is
23z z—2z,

This limit is then called the derivative of f{z) at z=z and denoted by

unique.
f(z,)=lim PAC P AC YR f(z,)=lim S@=TE) ere 55 =z—zg.
Tz, Z—ZD Z—z, Z—ZD m n

Theorem: The necessary conditions for the derivative of the function w = f{z) to exist for all values of z

in a region R,

= = = =
cu cu ov oOv . . .
i) — —— —— ——are continjuous function of x and y in R.
Ex oy, éx, ;
- - = -
.. cu ov cu cv . .. . .
ii) —=— and —=—- — the relation (ii) are known as Cauchy- Riemann equations
éx oy ov ox

or briefly C-R Equations.

Proof: If {(z) possesses a unique derivative at any point z in R. then

, . fz+dz)— f(=2)
S = fim

In Cartesian form f(z)=u(x.v)+iv(x,y)

Sz=x+idyv., and
Fflz4+0z2)=u(x+ Sx, v+ Sv)I+ I v(x—+ 5x,y—|—5y)|

+Sx, v+ S| —[2(x, ¥)+iv(x, )]
Sx+idy

F(z) = lim {[zz(x+ Sx, v+ SyvI+ivix
Fz—0

z((x+5x,y+5y}—z((x,y}+3_ vix+Sx. v+ Sy)—vix.»)| —m

"(z)= lim
S 52*0{ Sx +iS v Sx +IiS v




Let us consider the limit 6z — Oalong the path parallel to the x-axis (for whichdy=0), then

oy (u(xtoxy)-u(y)  v(xtdxy)-v(x,y)
RHS of (1) becomes f(z)_alﬂ Sx i Sx

(@)=
f@=__+i_—-—-@

Let us consider the limit 6z —» Oalong the path parallel to the y-axis (for whichéx=0), then
RHS of (1)

£1(2)= lim {u(x,y+5y)—u(x, ¥) L v(x,y-l—Sy)—v(x,y)}
520 oy ioy

f,(z):}iﬁ{u(x,y+5y)—u(x,y)+ v(x, ¥+ 8y)—v(x, y)}

idy oy
, _151{ cv
TO% e e
cu ov
T — 3 ___3
f(@) I—@Jr—&y 3)

Now existence of f'(z)requires equality of (2) and (3)

cu OV _Cu OV
+ i =—Fi—+—

ox cx cy Cy
Equating rehl and imaginary part from both the sides.

Gt o S v

=— and —=— —.

&x &y Sy Ex



Analytic function:

A complex function f{z) is said to be analytic at a point z = z; if it is differentiable at z, as well as

in a nhd of the point z,. An analytic function is also called a regular function or an|holomorphic
function.

Theorem (2): If ffz)=u+ivis analytic at a point z=x+7iy, then u and v satisfy the Cauchy-

Riemann equations Su = ov and Su = ov at that point.

Sx &y &y ox

Proof:

f(z) 1s analytic means that f{z) possesses a unique derivative at a point z=x+iy. (proof of
theorem(1) follows)

Cauchv-Riemann equations in Polar form:

Property: show that the polar form of Cauchy-Riemann equations are

S 1 Sv tol s v
—=—— and —=—

cr ¥ o c cF
Soluation:

Complex variable =z in polar form is

z=re® ———(1)
W=fi(=z)
H+iv= f{re®)——— —(2)

where u and v are functions of r &

—Zl: + Z C;: = f'(re*). e ———(3)
e . ov | oz« . Owv
e e 7Z| —— + zZ
ok o4 bl o4 - o/
e . Owv = v
—_— = 77 — —_
ok <4 Vol o4 P Vo o I

Equating real and imaginary parts we get

ze 1 Sv ze v
= carzdd = —p
- - & ok =4




ou _ov ou
Note-1: The necessary conditions for f(z) to be analytic are oy _5

these two relations are called Cauchy-Riemann Equations.

ou
Note-2: The sufficient conditions for f(z) to be analytic are, four partial derivatives x

must exist and must be continuous at all points of the region.

Example-1:
» Show that f(z)=Re z is not analytic.

Solution: f(z) = Re z =x

u=x andv=0
M_3 N_g M_o N
OX OX oy OX
C-R equation %, N, _ N are not satisfied
ox oy oy OX

Hence f(z2)=Re z=x is not analytic similarly f(z)=Im z=y is not
analytic

Property-1: The real and imaginary parts of an analytic functions

f(z)=u+iv in some region of the z-plane are solutions of Laplace’s
equations in two variables.

2 2 2 2
a—l:+a—u:0 and 8—\2/+6—Z:0
ox® oy ox° oy

Solution: f(z)=u+iv is an analytic function, then

iony U_V o v
(By C — R Equation) = and @
) ou ov o ov
Consider _;[:_3,___‘(2)’ _;,:‘_@[_‘__(3)

Diff (2) with respect to x
Diff (3) with respect toy



ox*  oxoy
U
oy oyox
Adding (4) and (5)
o’u  ou
¥+W:0————(6)
v _ I
Diff (2) with respect toy o° dyox
ov o 8
Diff (2) with respect 0 X ¢~ oy O

oV 0%

Adding (7) and (8) we get y+y=0————(9)
» Thus both functions u(x,y) and v(X,y) satisfy the Laplace’s equations
in two variables. For this reasons, they are known as Harmonic

functions or Conjugate Harmonic function.
Polar form: If f(@)=u(r, &+i v(r, 6 is an analytic function, then show

that u and v satisfy Laplace’s equation in polar form.

> Laplace equation in Polar form in two variables,

ov 1 ov 1 62v_0

ou 1 aou 1 azu_o ng v, rtov,
o’ r or r* o6

T
onrr r or r? 06?

We have C-R equation in polar form

cu 1 &év
- _ = - — (1
ar r 88 1
du dw
ae__rar____(z),) )
cu 1 év 1 &v
s T (3)




using (4) and (1) on RHS of Equation (3), we get

g q g
o'u _ _1fou), 1(_ 1%
06* rlor) rl\ r o6

o%u 1 du 1 8%u
+ — + =0

or? ¥ or rt 06°

Hence u 1s Harmonic

From (1) we get, & _, %
86

&6
Differentiate with respect to 6 86:; =7 56;; -———©)
From (2) we get 2—: =- %2—;— -——(6)
Differentiate with respect to g =+ Fi;, 23 —% ;;ug -

using (J),(6) on RHS of (7)

elv 1 S ovy 1 1 &%v _ 0
or’ r or rlraoee?

d°v 1 v 1 8%
Tt T =0
or r or r- oéo

Hence v 1s Harmonic



Orthogonal System:
» Two curves are said to be orthogonal to each other when they

intersect at right angles at each of their point of intersections.

Property: If w=f(z)=u+iv be an analytic function then the family of
curves u(x,y)=c¢ and v(xy)=cform an orthogonal system.

Solution: f(z)=u+iv is an analytic functions.

au_ov
ox o ————C—-Requation
a__
oy OX
u(x,y) = c,
differentiate with respect to x, we get
6u Ou dy
+ Y =0
ox Oy dx
Out
&
& o T
oy

differentiate w.r.t, X we get

oV N ov dy _0
oxX oy dx
oV
dy _ ox _ v

oy



ou oV
+ +

m,.m, a(ax X aé\a/x
o 0oy
N v

_ Y X _ |
=— X (By C-R Equations)

"% oy

m,.m, =-1, form an orthogonal system

Polar form: Consideru(r,0)=¢——(1) ad Wr,0)=c,——(2)

du 1 0Ov

fr 4 DAE — ———(3) C-R Equations
ou cv

= T A

ce ar

differentiate (1) w .r.t. &

du du dr
Fa) + Fal
8 8a dr dé

=0

L8]
=

dr 8
dg  du (4
ar
r _
tan ¢, = ar where ¢ being the angle between
dé

the radius vector and the tangent to the curve(l)



tan ¢, U
00
ou
or
8_u
r
tan gy = ——L ————(5)
00
Differentiate (2) w.r.t. 8
oV (’9v dr
89 or d@
oV
dr 50
dg ov
or

tang, = , Where ¢, being the angle between the radius and the tangent to the curve(2)

d0



r— r—
tan ¢ x tan ¢, = air X a(?/r
o0 06

1 ov oV

r.- r

__roe. _or

00 o

or 060

= —1 form an orthogonal system

Note: We have z=x+iy and z=x-iy

Now x:%(z+7)

1
y 2i(Z Z)
Consider f(z)=u(x,y)+i v(x,y)———-Q)
f(z):u(z+7,z_7j+i V(z+7’z—7j
2 21 2 2i
put z=7 we get
f(z)=u(z,0)+i v(z,00————(2)

. (2) issame as (1) if we replace x by z and 'y by 0
Similarly in polar form if we replace r by z and 8 by 0 inf (z) =u(r,8) +i v(r,6)

This is due to Milne-Thomson



Note: (i) sin(i X) =isinhx or sinhx :%[sin(i X)]
(i1) cos(i x) = cos hx

Example:1
Show that f(z)=sin z is analytic and hence find, '(z)
Solution:  f(z) = sin(2)

=sin(x+iy)

=sin(x)cos(iy)+cos(x)sin(iy)

f(z)=sin x cos hy + i cos x sin hy

Equating real and imaginary parts u=sinx coshy and v=cosx sin hy--(1)

u and v satisfies necessary condition Z_“:?
X oy
a__ v
oy ox
frz)=M i Y
OX  OX
=cosxcos hy+i(—sinx)sinhy)————(*)

= cos(x) cos(iy) —isin x.%sin(iy)

= cos(X) cos(iy) —sin x sin(iy)

= COS(X + 1Y)
f'(z) =cos(2) dlsin 2] =C0SZ
dz
or By Milne's Thomson method replace x by z and y by O in (*)

d[sin z]

f'(z) =cos(z).1-0 .. f'(z2) =cos(z) or = CO0S Z



2) Show that w = z +e” is analytic, hence find dw

dz
Solution: Letw= f (z) =u+1iv.

w=(X+e*cosy)+i(y+e siny)
Equating real and imaginary parts
u=(x+e*cosy),v=(y+e*siny)
u and v satisfies C-R equations

consider

_dW: f'(z):a_quiﬂ

dz OX OX
=((+e*cosy)+i(e*siny)
=1+e*[cosy+isiny]——— @)
—=1+e*.eV
=1+e”

diz+e’]l_, _ .-
dz

Or By Milne’s-Thomson method replace x by z and y by 0 in (1), we get
derivative of z + ¢’

Example-3:

show that w = log(z)is analytic, hence find f '(z)
w = log[re*]
w = log(r)+i6@ equating real and imaginary parts
u =log(r) and v =6, u and v satisfies C-R equation in polar form.

consider
f'(z)=e" [a—u +i @]
or or
|7
r
_ e—iH
Cor
1
f'(2) =reﬁ————(1)
f'(z) = 1
z
dflogz] _ 1
dz z

or by Milne's Thomson method replace r by z and € by 0 in RHS of (1), we get

dllogz] _ 1
dz z



Cauchy's-Riemann equations in Cartesian form
Statement: The real and imaginary part of an analytic function
f@)=u(x,y)+iv(x,y) satisfies Cauchy’s-Riemann equations.

ou ov ou ov .
—=— and — =-—— ateach point
oX oy oy OX

Note: A function f(z) is analytic, then

f'(z) = au +1 v limit approaches along the x-axis
OX  OX

and f'(2)= u_ [ au limit approaches along the y-axis
oy oy

Example: The function f(z)=z? is analytic for all z, and f '(z) = 2z
Solution:

f(z) = (x* —y?) +i 2xy is analytic every in the complex plane.
u=x>-y® and v=2xy

M_ox, Moy Mgy Yopy
OX oy OX oy
f’(z):@—u+i@

OX  OX

=2X+12y

=2(X+1y)

=212

2
Ld@) _,,

dz



Note: If f(z)=u(r,6d)+iv(r,0) then Cauchy-Riemann equation in polar
form:

ou 1ov ou oV
=—— and =

o rod 00 or
where f'(z) =e [a—“ﬂ@} limit
or or

approaches along the radial line and

-0
f'(z) = © [S\é —1 S;} a limit approach along angular path.

Construction of Analytic Function:
Construction of analytic function f(z)=u-+ivwhen u or v or u+vis given.

Examplel: Find the Analytic Function f(z), whose real part is
e**[xcos2y — ysin2y].

Solution:
Given u=e**[xcos2y-ysin2y]-———(1)
Differentiate (1) w.r.t. x
c’;_u =e**[cos2y]+2e**[xcos2y —ysin2y]-———(2)
X
Differentiate (1) w.r.t. y
ou

=e”[-2.x.sin2y —y.2c0s 2y —sin 2y |- ———(3)



Consider f'(z) = ou 4 ov ————(4)
OX OX
By C-R Equations replace ov — _ou
OX oy
oX oYy

using (2) and (3) on RHS (5)
f'(z) =6 [cos 2y + 2xC0s 2y —2ysin 2y]+i e [2xsin 2y + 2y cos 2y +sin 2y]

By Milne's Method replace x by z and y by O
f'(z2) =e*[1+22]

f'(z) =e** +2e**.z

int egrate we get

2z 2z
f(2) :%eZZ +2[e2 .z—e4 }Lc

f(2) _leerygerr Lo o
2 2
f(z)=2ze*" +c

Note: u+iv=(x+iy)e* e +c

=e™(x+iy)(cos2y +isin2y)
U+iv=e?[(xcos2y—ysin2y)+i(ycos2y+xsin2y)]+c
su=e*[xcos2y—ysin2y]+c

v=e"(ycos2y+xsin2y)

Taking c¢=0we get

u =e**[xcos2y — ysin 2y] which is real part

and v =e”*[ycos 2y + xsin 2y] is imaginary part of a required analytic function f (z)



sin 2Xx

2) Find the Analytic function whose real part is
COS2Yy —COS 2X

Solution:u = sinex 1)
cosh 2y —cos 2x

Differentiate w.r.t. X
ou _ (cosh 2y —cos2x).2cos 2x —sin 2x[+2sin 2x]

OX (cosh 2y —cos 2x)°
ou _ 2cosh2ycos 2X — 2[cos’ (2x) +sin® 2x]
OX (cosh 2y —cos 2x)°
ou _ 2cos2xcosh2y-2 2)
ox  (cosh 2y —cos2x)’
Differentiate (1) w.r.t.y
ou  sin2x[—(2sinh 2y)]
oy  (cosh 2y —cos2x)’
ou  -2sin2xsinh2y 3)
oy  (cosh2y—cos2x)?
Consider f'(z) = a_u+ i v
oX  OX
By C-R equation replace il = _ f'(z) = u_ i u

OX oy oX oy



2cos2xcosh 2y —2]+i2sin 2xsinh 2y
(cosh 2y —cos 2x)?

By Milne's Thomson method replace x by z and y by O
2[cos2z—-1]+1.0

f'(z) = [

f'(2) =
(2) (1—cos2z)?
£(2) = —2[1—00322]
(1—cos2z)
—2
f'(2) =
(2) [L—cos2z]
—2
f'(2) =
(2) 2sin® z
f’(z) = —cosec’z
intergate

f(z)=+cotz+c

3) Construct the analytic function whose imaginary part is Er-l)sin 0, r=0.
r

Hence find the Real part.
Solution: Givenv = (r —ljsin 0————()
r

Differentiate (1) w.rt. 4

a—u:(r—ljcose —————————— (2)
00 r

ou ,
52(1+—2j8m9 ——————————— (3)



Consider f'(z) =e™" [8_u+ i @} ————(4)
or or
i ou 1 ov
By C-R Equation replace — = — —
Y a P or r 060
RHS of (4) we get

f'(2) — e '? 1&44@:'
| r 060 or

f'(z)=e" l(r —ljcoséw i [1+ izjsin 9}
T r r
By Milne's method replace r by z and € by O

f'(z) =¢° [l(z —lj.1+ i.O}
Z Z

£'(2) =(1—i2j
VA

Integrate we get

f(z):z+l+ic
Z

To find real part: Consider f (z) =re' + L

e tic

u-+iv=(rcos@+irsin 0)+%(cos¢9—isin 0)+ic

u+iv=[r+1jcos¢9+i[[r—ljsin ¢9+c}
r r



Equating real and imaginary parts

u:(r+éjcose
r

1) . . . .
V= (r . —jsm @+c to get actual imaginary part of an analytical function
r

f(z)=u+iv taking c=0
.'.v:(r—ljsine
r

4) Find an analytic function f (z) as a function of z

given that the sum of real and imaginary part is x> — y* + 3xy(x - y)
Solution : The sum of real and imaginary part is given by
U+v=X -y +3xy(X—y)——————— 1)

Differentiate (1) w.rit. x

u @—3X 2_0+3xy+3y(x—Y)
OX OX

a_u+@:3x2+3xy+3y(x—y)————(2)
OX  OX

Differentiate (1) w.rt.y

u @—O 3y% +3xy(=1) +3x(x - y)

oy oy
au oV

+—=-3y° = 3Xy +3X(X—y) —————— (3)
oy oy



ou oV

By C-R Equation replace — =
Yy q p By Ox

ou oV in(3)

ox oy
ou_ov _ —3y? —3Xy +3X(X—y) ——— —— (4)
OX OX
Consider
Ou L OV _ a2 + 3xy +3y(X—Y)
OX OX
ou _ov _ g2 _ —
X o = 3y —3xy +3x(X—VY)
29U _ 3y2 — 3y + (X—¥Y)3(X+y)
OX
el = 3x° —3y?® +3x° -3y~
OX
- 1YL S —— (5)
OX
O, N _3y2 4 3xy +3y(X—Y)
OX OX
ou_ov _ —3y? —3xy +3X(X—Y)
OX  OX

22\): =3X° +3y? +6Xy + (X—Vy).3(y — X)
=3x° +3y? +6xy —3(x—Vy)?
= 3X°® +3y? +6Xy —3x* —3y® +6Xy

=12xy



Consider f’(z):&—u+i@
ox  OX

= (3x* —3y?)+i6xy[by (5)&(6)]

By Milne's Thomson method replace x by z andy by 0
f'(z) =3z°

integrat

f(z)=2>+c

5) Find an analytic function f(z)-u+iv, given that u+v= iz[cos 20—-sin26],r #0
r

Solution:u+v:i2[0052¢9—sin 20]-———- 1)
r

Differentiate (1) w.rt.r

ou ov 2 :
—+—=——|c0s20-sin20|————— 2
or or r3[ ] @)

Differentiate (1) w.rt.d
ou ov
__+__
00 00
By C-R Equations
ou 1ov

or 100 Uin | Hs of (3)
ou _ ov

00  or

:r—zz[—Zsin 20-2c0520]————- ©)



—r%+ r Z:: = :22 [sin 20 + cos 20]
Zu — 2\/ = _3 [sin20 +cos20] ——— —— (4)
r rr
Consider
Zl; T+ 2\: = :3 [cos 20 —sin 20]
ZL: — Z\r/ = :32 [cos 20 +sin 20]
2 Zl: = :3 [2cos 20]
ou —2
o 13 cos2 ————————— — — — — 5)

Subtract (3)-(4) we get

ou 2 :
2—=——|-2sIn260

or r’ | ]
ou 2
—=—sSIn20————————— 6
or rt (6)
Consider f'(z)=e™ {a_u +i @}

or or
f'(z)=e™ [—%cos 20 +1i %sin 29}
r r

By Milne's Thomson method replace r by z and 6 by O

, 2
f'(2)= =
integrate

1
f(2) =—2(—?J+c

f(2) = +c
z



r
conjugate and also corresponding analytic function.

6) Show that u = (r +E)c050 is harmonic. find its harmonic

r
we shall show that u is a solution of Laplace's equation in two variables in polar form.
2 2
ou lou 1o O @)

Solution: Given u:(r +1jcose ——————— @

e —+-—+—>—-—
or’ ror r?o6°
Differentiate (1) w.r.t. r

ou 1
—=|1-=|cosf—————————————— 3
or ( 2) ®)

Differentiate (1) w.r.t. 8

ou 1 :
£:[1+Fj(—5m O)—————————————— ®)

Differentiate (5) w.r.t. 8

o%u 1
=—|r+—|cosf——————— 6
06? ( rj (©)
Consider
2 2
0 u2 +16—U+i2 0 u2 =%coséwl(l—izjcos@—%(r+1)c039
o0 ror r-o06° r r r r r
:—3c039+lcos&—%cos@—}cose—%cose
r r r r r
:%cose—%cose
r r
=0

. u is solution of equation(2)
Hence u is harmonic function.



Consider

: ou .oV
f'(2)=e"| —+i— |—————— 7
(2) [ar ar} 7
By C-R Equation a—u:—r@
or
oV 1 ou .
c.replace — =—=———1in (7
P or r o6 7

f'(z)=e" [[1—%jcose9—l[r +ljsin 9}
r r r

By Milne's Thomson method replace r by z and @ by O

f'(z) = [1-%)- i.0
Z

f'(2) :(1-%)
Z

Integrate
1
f(z)=z+—
z
To find harmonic Conjugate

. . : 1 .
consider u+iv=re'’ +=e"
r

u+iv=[r+1jcose+i[r—ljsin6’
r r

Equating real and imaginary parts

U = (r+—1jcos6’
r
\V/ _—[r——ljsin ]
r

which is required conjugate harmonic



7) If (z) isa regular function of z show that [;X—Zz+;y—22j| f@) =4/f'@2)

Solution:

We have f (z) =u+iv

[ f(2)|=vu®+v? —————— @D
f@)| =u"+v——————— (2)
andf’(z)za—u+i@

OX OX
2 2
@)= \/[é“j +( 2]
OX OX
ou ov)’
f — | ————(3
12 [axj +( 2] 3
Differentiate (2) w.r.t. X
a\f(z)\
™ ( +Vv?)
_ZUa_u 2@
OX  OX

Again differentiate w.r.t. x
0%t/ (2)° o[ ou  ov
— 5 =2{—|U—+V—
OX OX| OX OX
o°u au ou 0V ovov
=2\ U—+——+V—+——
OX? ax OX Ox®  OXx OX

2 2 2
2 ua—g+(a—uj +va—+(@j —————— (4)
OX OX ox?  \ ox




Similarly Differentiate (2) w.r.t. y we get

| (2) _9 u@Jr[a_“TJrva_ZV{@jz _____ (5)
oy’ oy* oy oy* oy

Adding (4) and (5) we get
U@L eltal [ [ou, au], [ov, o (a_j(@j ay (o)l
ox’ oy? ox*> oy’ ox* oy’ OX oX oy oy

w. k. t. if f(z2)=u+iv is regular or analytic function then real part u and

imaginary part v satisfies Laplace equation in two variables or two
dimensional Laplace equation.
_ou U o’v oV

..yﬁ‘y—o and W‘FW:O

Using these on RHS of (6)

a3
o5 (3]
(&)%)

t'z)}"  [from (3)]

=4




Complex integration:
Line Integral:

Let f(z) be a single valued complex function and
continuous defined at each point on a curve C between end points A and

B, in the z-plane. Then the line integral of f(z) along the curve C
traversed from A to B is denoted by

T fdz  or [f(2)dz

— e == . B= n
A3 N\
A sz(ﬂ\“\ J(z)
A=A A2
Z-Plane W - Plane

Note: Now, we divide this curve C into n parts between the points
A=A(z), A(2,), —————~— A(z,)=B

We get n line segments say C,:AtoA,C,:At0A ———————— C.:A_ t0A
~C:CuC,uCu————————— uC, isunionof C,C,——-C,

[ f(2)dz= | f (2)dz

C C,u C,uCu———-uUC,

=[ f@dz+] f(@)dz+] f(2)dz+-————- [ f(2)dz

G
or

T f(z)dz = T f(2)dz +T f(2)dz +T f(o)dz+——————-— T f(2)dz
A A Ay As



Note: If curve C is traversed from B to A then line integral of f (z) along C is

j f (2)dz =—j f (2)dz

ie. j f(z)dz = —T f (2)dz

B
Note: Now setting z = x+1y

f(z)=u(x,y)+iv(x,y)
or f(z)=u+iv
o dz =dx+idy

j f(2)dz = j (u +iv)(dx +idy)

= I(udx —vdy) +i(vdx +udy)
C

j f(2)dz = j (udx —vdy) +i j (vdx + udy)

This shows that evaluationof the line integral of a complex function can be
reduced to the evaluation of two line integrals of real functions.

B(x2,¥>) (X2,2) (X2,¥2)
f(z)dz = j (udx —vdy) +i j (vdx + udy)
A(Xy, Y1) (X1, y1) (1, y1)
2+i
Example: Evaluate j (7)2 dz along
0

(i) The liney =§, (if) The real axis upto 2 and then vertically to 2 +1i

Solution: We have Z =x—1y
dz = dx +idy

(i) Line integral of f(z):(Z)2 along the curve x=2y between the points z, =0 and z, =2 +i

A(2.1)
s /

/

0(0.0)



Along 0A: x=2y ..dx=2dy
2+i

[(z) dz= (zjl) (x—iy)? (dx +idy)

0 (0,0)
Replace x =2y and dx = 2dy

2+i (2,1)

[(z)dz= [ (2y-iy)*(2dy+idy)

0 (0,0)
Here integral is a function of y alone and y varies from 0 to 1

= j (2-0)*(2+i)y*.dy

y=0
3 1
:§(g_i) ¥
3 3 |,
5 i
=—(2-1
A
(i) Line intergral along the real axis upto 2 and then vertically (2+i)
AC2Z.1))
L)
L]
OCO0.0) B(2.0)

Here Curve C: C, UC,
where C: Oto AdividedintoC,:OtoBandC,:Bto A

2+i ) (2,0) (2,1)
[(2) dz= [ (x=iy)*(dx+idy)+ [ (x—iy)*(dx+idy)
0 (0,0) (2,0)

In the first integral X is varies from 0 to 2 and y=0 ... dy=0
In the second integral y is varies from 0 to 1 and x=2 .. dx=0



Using these on RHS of the above integral

2 1
=J‘ x2dx + J‘ (2 —iy)Z2.idy
x=0 y=0

— )g : + 1 (2:;?’)3 T
=%—%|:(2—i)3 —8 |
:%—%[(3—40(2—9—8]
- 2—%[—6—11i]

— §+%(6 +11i)

— Z[14+11i]

Example—2: Evalute_[ z°dz ,along the circle \z\:l.
C

Solution: The given Curve C is |z|=1
Complex variable z in polar form
z=re"

r=1and ¢ varies from 0 to 27

z=¢"
dz =€".idé
dz =ie’do



N

- J-z?’dz — J. z3dz

C |z|=1

Along |z| =1, r=1, &=0 to 2
27

— I (eié’)S-i eigdg

6—=0

27z -
=i | e*“?deo

6=0

) |:e4i9 :|2”
=1

41 o

~ 3 1]

'f z3dz = %[COSSﬂ—l— isin8sz —1]

C

_ %[1+0—1]

—0
(2,4)
Example-3: Evaluate I (2y + x?)dx + (3x — y)dy along

(0.3)
(i) The parabolax =2t andy =t* +3
(i1) The straight line from (0,3) to (2,4)
Solution :
(i) Along x=2t and y =t* + 3, from the given limit, x — 0 to 2
and y — 3 to 4. Compute limit for t ie.



Here t varies from 0 to 1, as x varies from 0 to 2 and y varies from 3 to 4
SLX=2t  dx=2dt
y=t>+3 dy=2tdt

(2.4)

Let I= j (2y + x?)dx + (3x — y)dy

0,3)

I= [ [2(t° +3)+4t* |2dt +[ 6t —t* ~3] 2t dit

1
t=0

2 [et2 +6] dt +[6t2 —t? —3t]dt

—

2

[et2 +6+6t° —t3—3t]dt

—

=2 [12t2—3t—t3+6]dt

—

1 T L [ e—

+
3 2 4




(i1) Along straight line from (0, 3) to (2,4).
Equation of line joining the points (0, 3) to (2,4)
Y=Y _ Yo=Y

(0.3)

Taking y:E(x+6) dyzd—zx and x varies from 0 to 2
{ (X+6)+ }dXJ{Bx—E(HG)} o
2 2

X + X +6)dx + (6x— x—6) d%

1
I



-l>||a .|>|H .l>||A NI -I>|H .|>|H

© =
0"\1 H‘@
Nhl

[4x +AX+ 24 +5X— 6]d

(4x +9X +18)dx

] Ot O

3 2 12

4—+9X—+18x
3 2 1
4x§+9xﬂ+36

3 2 ]

%§~+184—36}

[ 32+54 +108}
3



Cauchy’s Theorem
Statement: If f(z) is analytic function and f'(z) is continuous
at all points inside and on a simple closed curve C

then j f(2)dz=0
C

Proof : Letf(z)=u+iv andz = x+1iy,
dz =dx+idy as usual.
Then

j f(z)dz = j (udx —vdy) +i j (vdx +udy) ——————— 1) C
C C C
The given curve in the complex plane is a simple closed curve C

Greens Theorem states that

J'de+ Ndy = ﬂ(@—%}x dy, Where A is a region bounded by A

Applymg this theorem on RHS of (1) we obtain

jf(z)dz_”{a( v) au}dxdy |”{——%}dxdy
ou_ov au_ ov

Since f (z) is analytic, we have Cauchy Riemann Equations — =—,—

ox oy'oy  ox
J‘f(Z)dZ—J.J‘|:——+—:|dXdy |J‘J‘[a—u——}d dy

=0 This proves Cauchy's Theorem

Extension of Cauchy’s Theorem:
If f () is analytic in the region D between two simple closed curve C and C,, then

j f(2)dz = j f (2)dz

G

To Prove this, we need to introduced the cross cut AB, say



Now f (z) is analytic at all points inside and on a simple closed curve
[ :CuABuUC, UBA, By Cauchy's Theorem

[ f(2)dz=0

| f(z)dz =0

.C.quE;)C;ZB: [ f(@dz+ ] f(2)dz+ [ f(z)dz=0
T’ f(z)dz + i’B f(z)dz +Cj f(2)dz +BAj f(z)dz =0
C' f(z)dz+ i'B f (2)dz —jle (2)dz - j AfB (2)dz =0

c AB o AB



jf(z)dz—j f(2)dz =0

G

j f(2)dz = j f(2)dz

G

IfC.,C,,Csunnnn. C,, be any n number of closed curves with in C then
j f(2)dz = j f(2)dz + j f(2)dz + j f(2)dz +
C C, C;

G

Example: Verify Cauchy’s Theorem for the function f(z)=z> where C is

the square having vertices (0,0), (1,0), (1,1),(0,1).

Solution:

C(0,1)

B(1,1)

N

0(0,0)

A(1,0)



Here the given curve C is the square in the Complex plane as shown in
the above figure.

Since f (z) = 2% is analytic everywhere in the complex plane, it is analytic at all points inside and on the curve C.
By Cauchy's Theorem

f(2)dz=0

7°dz = j 720z + j 724z + j 7°dz + j 7°dz
c OA AB BC o
(1,0) (0] 0) (0,0)

2%z = j zzdz+J zzdz+J' zzdz+j 71 /S )
c (0.0) o) @) 0)
(1,0 (1,0)
Consider j 70z = j (x+iy)? (dx+idy)
(0,0) (0,0)
Herey=0 ..dy=0 andx variesfrom0to 1
1

= _' (X +i0)?(dx + 0)

11 11
Consider j 22dz = j (X +iy)? (dx +idy)

(1,0) (1,0)

Here x=1, dx=0and y varies from0Oto 1
1

= [ (L+iy)*(idy)

y=0



:{(1”}’)3} (1+)? = 2i

(0,1)
Consider [ (x+iy)®(dx+idy)

@D

Herey =1, dy =0 and x varies from 1to O
0

= [ (x+i)?dx
=1

C(x+i)?f
3

_ 2P @iy

— ~[-i—@+i)2i]



(0,0) (0,0)
Consider '[ 7%dz = I (x+iy)? (dx +idy)

0,1) 0,1)

Herex=0, dx=0andy variesfrom1to0

= | (iy)idy

44

Substitute 2,3,4&5 on RHS of (1)

Izzdz LA ,,25,0

2 3 3 3 3

2. 202 2

33 3 3

=0 Hence Cauchy's Theorem verified

If C is the circle |z|=1 verify Cauchy's Theorem for f (z) = z°

Example-2:

Show that J \z\zdz =i—1, where C is the square having vertices (0,0)(1,0)(1,1)(0,1).
C
Give the reason for Cauchy's theorem not being satisfied.

Solution:-
ﬂz\zdz = “z\zdz+ J \z\zdz+ J \z\zdz+ “z\zdz
C 0A AB BC (o]
(1,0) () (0,1) (0,0)

= [ 0C+y))(dx+idy)+ [ (¢ +y?)deridy)+ [ (¢ +y°)(dx+idy)+ [ (X +y*)(dx+idy)

(0,0) (1,0) (11) (0,1)



1

J' x2dx + j (l+y )|dy+.|' (x* +1)dx + '[ y’.idy

x=0

1 (4) 4 i
== 4i| = |-=—=
3 [3) 3 3
=1+i
I|z|2 =i—1#0. Hence Cauchy's Theorem is not verified since f (z):|z|2 =X* +y?

ie. u+iv=x"+y? is not analytic. The necessary conditions u, =v,,, u, =—v, are not
satisfied. This is the reason for Cauchy's Theorem not being satisfied.

Cauchy’s Integral formula:

Statement: If f(z) is analytic within and on a closed curve C and if a is

any point within C, then f(a):ziﬂij%dz

Proof: Consider a closed curve C with ‘@’ is a point within C

f(2)
(z-a)
with the point 'a’ as centre and radius r, draw a small circle C,

Consider function which is a analytic at all points within C except at z = a.

lying entirely within C

Now LZ)) being analytic in the region

enclosed by C, and C, we have by Cauchy's Theorem
f f(Z) f f(Z)

C,




C
Ci

For any pointz onC,, z-a=re"
anddz=ire’d9 ..z=a+re"
Where @ varies from 0 to 27

J‘ f(Z) dZ—j f(a+5e'9) |9d9
2 (z-a) . re'

2
:ij f(a+re?)do
0
in the limiting form, as the circle C, shrinks to the point 'a'ieasr — 0,

The above line integral approach to

| 1(2) dz:isz(a)de

2 (z—a)
:if(a)zfde
_ 2. (a)
. _ 1 @
'f(a)_ij(z a) 3

which is the desired Cauchy's Integral formula



Note:- Generalized the Cauchy's Integral formula:

(i) F/(a) = — [ 1) 4

27 (z—a)’

(i) f"(a) = 23{ i [ (Zf_(z))Sdz and 50 on

1 f(z
(@)= | D
27l (z-a)
Note:- In view of solving problems we consider Cauchy's integral formula as

'[ f(2) dz — 27 f(a) ifaisinside C
l(z-a) | O if a is outside C

Problems on Cauchy’s Integral formula:

Example-1:

Evaluate E[ e izw)dz over each of the following regions C:
(i) || =27 (ii)\z\:% (iii)|z -1 =1
Solution:

j ¢ dx=.f&dz

L(z+in)  L[z-(ix]

where f(z)=e*, which is analytic everywhere in the complex plane



(i) |z| = 27 is acircle centre at the origin and radius 27

1 (0.27)

K' - -
(-27,0) (27.0)
@ -iT

e ¢ 1)
i Zrim 2T l E —(—iﬂ)]dz

Here the point a =-iz lies inside the circle |z| =27 and f (z) =€?

is analytic within and on the circle |z| = 2z. By Cauchy's Integral Formula
=271 T (-ix)

=27ie™"”

= 27i[cosz —isinz]

= -27i

(i) \z\ :% is a circle centre at the origin and radius %
Je—.dz =I f (Z) dz
L(z+ir) ! [z—(—m)]

Here point a=-1 lies outside the circle

circle |z| =%, by Cauchy,s Integral

z

e
formula j—

—=0
2 (z+ir)



(iii) |z—1 =1is a circle centre at the point (1.0) and radius 1.

[t s

2 (z+ix) z—(—ir)]
Here point a=-iz lies outside the circle

\z —1\ =1 by Cauchu's Integral formula

z

e
J‘(z+i7z)

Cc

dz=0

1T
1
w

@ -t




Evaluate using Cauchy's integral formula:
2z

(i) Ie—dz where C represents the circle |z|=3.
2 (z+1)(z-2)
2z
e dz :J- f(2) ,
(z+1)(z-2) 2 (z+1)(z-2)
Where f (z) = e** which is analytic every where in the complex plane.
1 A B

Z+1)(z-2) @+ (z-2)

Solution: I
C

Consider

1=A(z-2)+B(z+1)

1
putz =2, Bzg
1
putz=-1 A=-§
1
1 __ 3 .3
(z+D)(z-2) (z+) (z-2)
1l 1 1
:§|:(Z_2)_(Z+1)j| ................ (2)

using (2) in (1) we get

22

e 1 1 1
I(z+1)(z—2)dz zlf(z)'g{(z—Z)_(z+1)}dz

C

_E f(z) B f(z) *
_3{I(Z_Z)dz j[z_(l)]dz} .................... (*)

C Cc

|z| =3 is a circle centre at the origin and radius 3



e f@) o ¢ f(2)
_3{£(z—2) Iz (-1)] }

here point a=2, a=-1 both lies inside the
circle |z|=3

-1 ot (2) % 27if (-1)

N
N

Singular point, Poles and Residues:

(i) A point z=a at which the complex function f(z) is fails to be

analytic is called a singular point or singularity of f(z).

Example:
1 : : :
Q) f(z2)=—, z =0 is a singular point
4

2) £ (2) = iz 7 =2 is a singular point
Z_



(i) A singular point z=a is said to be an isolated singular point of f(z) if
there exists a neighborhood of a which encloses no other singular point
of 1(2).

Example:

f(z)= 1, z =0 is an isolated singylar point of f (z) = E,
4 4
since nhd of '0' which encloses no other singular point of

f(z)= 1 or 1 IS analytic everywhere in the complex plane exceptatz =0
Z Z

Note: If a is an isolated singular point of a function f(z) then we can

expand f(z) by Laurent’s series given by

f(2)=>a,(z-a) +3b,(2-8) "o 1)

in the domain 0<|z—a|<R

Here the first term involving positive power series

of (z-a) is called analytic part of f (z) and

second part involving negative power series of (z-a) is called
principle part of f (2).

Note: The nature of the isolated singularity depends upon the number of

terms in principle part. Hence we have the following cases.



(i) Removable Singularity: If all the negative powers of
(z-a) in (1) are completely absent then f (z) = Z a (z—a)".
n=0

Here the singularity can be removed by defining f (z)
at point z = a in such a way that it becomes analytic
at z = a. such singularity is called a removable singularity.

Example: f (2) = Lzmz
Z
Here z = 0 is a singularity
z—sinz 1 2> 72 7'
g = | I St
Z Z 31 51 7l
1[23 z° 7' }
== e e e,
z°| 31 5l 71
z 7 7°
e
31 51 71

Since there is no negative powers of z in the expansion
z =0 is a removable singularity

(i) Poles: If all the negative powers of (z-a) in (1) after the m"
term are missing, then the singularity at z = a is called a pole of order 'm'
ie. f(z2)=) a,(z—a)"+ by + b, —+ + b _
"0 (z-a) (z-a) (z-a)
Note: A pole order one is called a simple pole.
Note: Poles of f (z) can be determine by equating the denominator to zero




z

Example: f (z) =

(z-1)°
Here z =1is asingularity and put z-1=t
nz=t+1
ez et+1
(z-1)* t*
€
— t—4€
=%{l+t+ﬁ+i+ ............... +}
21 3
1 1 1 1 t ¢t }
=€ —
tt ot 2t2 6t 41 5l
1 1 1 1 (z-1) (z-1)° }
=e + + + + + PP
(z-D)' (z-1)° 2(z-1)? 6(z-1) 4! 51

Here there are four terms containing negative powers of (z-1)
thus z=1 is a pole of order four.

(iii) Essential Singularity: If the number of negative powers

of (z-a) in () is infinite, then z = a is called an essential Singularity.
1
Example: f (z) = ze?

2!22 3!24 .........................

1
=z+=
z

f(z)=z+zl+%22+—z3+ ......................... )



Here there are infinite number of terms in the negative powers of z,
therefore z = 0 is an essential singularity of f (2).

Expansion given by (*) is expansion of f (z)

around an isolated singularity z = 0.

Residues:

The coefficient of (z-a)"in the
expansion of f (z) around an isolated singularity
Is called the residue of f (z) at that point.

The residue of f (z) at z=a is given by

Resf(a):% j f(z)dz or j f(z)dz =27i Resf(a)
7T C C

(1) If f{z) has a simple pole at z=a then
Res fla) =1lim, ,,[(z —a)f (2)]

(2) Iff{z) has a pole of orderm at z=a then

Res f(a)=lim,_,, {(mi”! ;;:1 [(z — a,)mf(z)}




Example:

Determine the poles of the

2

2
(z —1) (=z=+2)

function &)= and the residues at each

pole.

Solution:

>

="
(z D (= +2)
Here z=1 18 a pole of order 2

S =

Z==-2 18 a pole of order 1 or simple pole

=2

1 4l(z— 1)* (z+2)(z—1)72

S Res (1) =1lim,_,4 o —

d\(zfz)l

= lim
z—1 dz
—1; z%+4z

Res f(1) :g



2

s 12)=
Res f(2)=lim,_,_,(z + 2). D01

ZZ

=lim
22=2 (741)2

A
9

Cauchy’s Residue Theorem:

Statement: If f(z) is analytic within and on a closed curve C except at a
finite number of singular points a a,................. a, all are within C, then

_[f(z)dz:Zni[Resf(a1)+Resf(a2)+ ................ +Resf(a,)]



Example:

Using Cauchy’s residue theorem, Evaluate
2

_[ 22 ~dz, Where C is the circle |z| =2.5
2 (z-D)°(z+2)
Solution:
Z2
Clearly f (z) = Is analytic within and
yi@) (z-1%*(z+2) y

on a given circle |z| = 2.5, exceptatz=1,and z =-2.
z=1is apole of order 2.

. Res f (1)2% ................... D



z=-2 isasimple pole
4
. Res f(-2)=—
(D=3
By Cauchy's residue Theorem

2

[ 5 ———dz=2zi{Res f (1) +Res f (-2)}

2 (z-1)°(z+2)
= 27i {§+ﬁ}
9 9

=27l

Conformal Transformation:

Definition: Suppose two curves C; and C; in the Z — plane intersect
at the point P and the corresponding curves and in the W — Plane
intersect at . If the angle of intersection of the curves at P is the same
as the angle of intersection of the curves at in magnitude and
sense.Then the transformation is said to be conformal.




Note: If w=f(z) is an analytic function of z in a region of the z — plane
then w=f(z) is conformal at all points of that regions where  f'(z)=0

Note: To investigate the specific properties of a mapping w=f(z). We
may consider the images of

1) Straight line x= constant
1)  Straight line y=constant
1) |z|= constant and the lines through the origin

Note: The curves defined by u(x , y) =constant and v(x , y) = constant,
the pre images in the z —plane can be investigated. These curves are

called the level curves of u and v.
1) Discuss the transformation w=z?

Solution:

w=(X+iy)®
U+iv=x>—y*+i2xy

Equating real and imaginary parts
u=x>-y* and v=2xy

aw =2z=0 for z=0 therefore it is a critical point of the mapping

dz
Case (i) Determine the images of the straight line x=constant.

. The line x = ¢, has the image
u=c’—y?and v=2cy
Now eliminate y from the above relali

v? = 4c¢} [cf —uzj ....................... )

Equation given by (3) is a parabola with focus
at the origin and opening to the left.



Case (ii) Determine the images of the straight line y=constant.

The line y=c, has the image

u=x’-c, andv=2c,X
now eliminate x from the above relations.
V2 =4C2(U% +C) )i, (4)

Equation given by (4) is a parabola with focus
at the origin opening to the right

Here the pairs of linesx=c, and y =c,

in the z- plane map into parabolas in the w- plane as shown in the above figure
Case (iii)
Determine the images of |z|=r
Taking z =re"
W= rZeZiH
w=Re" ... (5) Where R=r’
¢=260



. The angles at the origin are doubled under the mapping w=z>.

The first quadrant of the z-plane 0< 6 < % IS

mapped upon the entire upper half of the w-plane

_Z
Q_z

N

Z - Plane

W - Plane

2) Discuss the transformation w=z 2 220
z

Solution: The given transformation is conformal except at the points z==+1.

since 0 zl—i., =0 for =+1

-

Z

s 1
wTre” +-¢e"
,

u+iv :(r+1]cos<9+(r—l]sin€
r r

Equating real and imaginary parts we get

~

4y = y+l cos @

;’ ST 1)
v=|r——|siné@

r

-

Q=0



Case (1):- Find the images of circle, r=constant ie. r=c, represents
a circle with constant Radius.

U

cos@=— where a=constant
a
sin@= M where b=constant
u- v
,J — =1 2
pels (2)

Equation given by (2) represents ellipses whose principal axes
lie in # and v axes and have the length 2a and 2b respectively
with foci(+2.0)

Thus the circle 7=constant 1s mapped onto ellipses under the transformation

w=z+—
z

L]
2.0

By
O =

z - plane W-plane

N
o/

Case (i1) Find the images of line &=constant, passing through origin, ie. 6=C

From (1) Ez(rﬂi} Where a=cosc¢
a ¥
v 1 .
—:[r——} where b=smc
b r
H2 V2
——— =l 3 where A=2a and B=2b
A B

Equation given by (3) represents hyperbalas in the w- plane.

Thus lines G=constant is mapped onto hyperbolas under W=z+l
z



Z - Plane
W - Plane

3) Discuss transformatin of w = e”

Solution: w =e”
uHv=e"?
x Iy

—¢".e
=¢*[cos y+isin y]
u+iv=e* cos y +ie"siny
Equating real and imaginary perts
U=e cosy

v=e'siny

Case (1): Find the images of x=constant ie. x=¢
from (1) we have u =€ cosy
v=¢'siny
w v =
WAV =R (2) where R=¢"
Equations given by (2) represents a circle centre at the origin with radius R
'Thus the line x=constant in the z -Plane is mapped onto circle in the

w- plane under the transformation w=¢"



-
N

Case (11): Find the images of a line y=constant ie. y=¢
From (1) we have

u=e* cos(c)}

v=e" sin(c)

X=C

Z-plane

v e*smn(c)

u e cos(c)

tan(c) = i
u

~v=tan(c)u
v=mi............(2) where m=tan(c) slope

Equations given by (3) represents a straight line passing through the
origin with slope m=tan c in the w — plane.

Thus the line y=constant in the z — plane is mapped onto straight line
passing through the origin in the w — plane under the transformation
W=g?

-AXis v
Y N

V=Ml

y=c¢

X -axis

Z -Plane
w -plane



Observation:

(1) Since &* # 0, for all z, the point w=0 is not an image of any point z.

(2) Suppose ¢ =0 ie. x=0 means that the y - axis in the z - plane is mapped onto
the unit circle o7 +v* =1

Y —axis

l il BN
Nl

z -plane

w —-plane

Bilinear Transformation:

> Let a,b,c and d be complex constant such that ad-bc£0. Then the
transformation defined by

Is called Bilinear Transformation

» from (1) we find

cw—a
is also calleda Bilinear Transformation

Note: The condition ad-bc = 0 ensures that (Z—W #0
Z

ie. The transformation is conformal if ad -bc # 0



Invariant Point:

Invariant points of bilinear transformation,
If z maps into itself in the w-plane ie w=z

_az+b
cz+d

or cz°+(d—a)z—b=0.......... (3)

» Equation given by (3) is a quadratic equation in z, the roots of the
equation are which are Z;, Z, invariant points or fixed points of
the Bilinear transformation.

» Cross Ratio: Bilinear transformation preserves cross ratio of three
points say points Z,, Z, Z3 of the z-plane maps onto the points W; W,
W3 of the w-plane.

this cross ration is given by

(W_ Wl)(WZ — W3) _ (Z B Z1)(22 - 23)

(W—wy)(w, —w,) (z2—-2,)(z, - 7))

Solving this equation for w interms of z

we obtain the unique bilinear transformation

that transforms z, z, z, onto w, w, W, respectively

Example: Find the bilinear transformation that transforms

the points z, =i z, =1, z, =-1 onto the points w, =1, w, =0, W, =
respectively. Also find the invarient points and the images of region
|z| <1 under this transformation.

Solution: The required bilinear transformation is given by
(W_Wl)(WZ _W3) _ (Z - 21)(22 B 23)

(W_W3)(W2 _Wl) ) (Z - 23)(22 - 21)




(W- W)( j 3
_@n)een) W o,

3{ ](W —w,) (2_23)(22_21) Wy
Wy

(w-1)(0-1) (z—-i)1+1)

(0-1(0-1) (z+D(1-i)
_1)= (z-1)(@Q+1)

(W (z+D(@-1)
B _ 2(z—1)
(z+1)(1-i)
_ 2(z-1)

(z+1)(1-i)
C(z+D-i)-2(z-i)
 (z+D(-i)

Cz—-lz+1-1—-z—-1z+1+1

- (z+1)(L—i)
C(z+D-i)-2(z-i)
 (z+D@a-i)

Z—1z+1-1-22+2i
(z+D(1-1)




_—z—iz+1+1i

C (z+D)(-i)
_(1-2)+i1-2)

C (z+D(@-i)
_@-2)@+i)
(z+D)(1-0)
C(1-2) @+i) (i)
C(A+2) A-i) @+i)

w==2) 2 (1+i)? = 2i
1+z) 2
1-i* =2
W= I(ll_ D) (*) is a required bilinear transform
+2Z

To find the invariant points of bilinear transform
Taking w=2 in equation (*)

_ia-2)
C (+2)
22+z=i-iz

22 +(1+i)z-i=0

s i)i\/(12+ i)2 — 4(—i)

_ —(1+i) =2+ 4i

2
_ —(L+i)£J6i
2

-4 2

, :—(1+i;+\/6_i, , :—(1+i;—\/6_i are

invarient points.



To find the image of \z\ <1 (ie. interior points of the unit circle)

W:|(1—z)
(1+2)
W+Wz =i-iz
WZ+iz=i—w
Z(W+i)=i—w
i—w
= e, (2)

i+w
Now |z| <1
I—w
—<1
1+W
i—w|<|i+Ww|

i—(U+iv)|<|i+(u+iv)|
—U+i-v)|<|u+i(i+v)
—[u-i@-v)] <Ju+i@+v)

U—i(l—v)|<u+i@+Vv)|

\/uz +(1-v)° < \/uz +(1+v)°
U +Vv2—2v+l<u®+vi+2v+1
—4v <0

4v >0

=Vv>0



Thus under the given transformation, the circular region |z| <1

(ie. interior of the circle |z| =1) in the z-plane is mapped
onto the upper - half of the w-plane.

2) Find the bilinear transformation that the points z =-1,i,1
onto the points w=1,1,-1 respectively.
Solution: Letz, =-1, z,=i 2z,=1
w=-1 w,=i w,=1
The required bilinear transformation is given by
(W_Wl)(WZ _Ws) _ (z- Z1)(22 _ 23)
(W_Wa)(Wz o Wl) (Z - 23)(22 o 21)
(w=1)(i+1) (z+1(i-1)
W+1)(i-1) (z-1)(i+1)

(w-1) (z+1) (i-1)°
(w+1)  (z-1) (i +1)?

(z+D)  (=2i)
T(z-1) (@)

(w-1)  (1+2)

w+1)  (z-1)

(w-1) (1+2)

(w+1) (1-2)

(w-)(@1-2)=(w+D(1+2)
W—-wWzZ-1+Z=w+Wwz+1+2
—2wz-2=0

—2WzZ =2

1 ... . .
w=—=this is the requird transformation
4



