COMPUTER ORGANIZATION

MODULE 1: BASIC STRUCTURE OF COMPUTERS

BASIC CONCEPTS
e Computer Architecture (CA) is concerned with the structure and behaviour of the computer.
e CA includes the information formats, the instruction set and techniques for addressing memory.
e In general covers, CA covers 3 aspects of computer-design namely: 1) Computer Hardware, 2)
Instruction set Architecture and 3) Computer Organization.
1. Computer Hardware
» It consists of electronic circuits, displays, magnetic and optical storage media and
communication facilities.
2. Instruction Set Architecture
» It is programmer visible machine interface such as instruction set, registers, memory
organization and exception handling.
» Two main approaches are 1) CISC and 2) RISC.
(CISC>Complex Instruction Set Computer, RISC>Reduced Instruction Set Computer)
3. Computer Organization
> It includes the high level aspects of a design, such as
— memory-system
— bus-structure &
— design of the internal CPU.
> It refers to the operational units and their interconnections that realize the architectural
specifications.
» It describes the function of and design of the various units of digital computer that store and
process information.

FUNCTIONAL UNITS
e A computer consists of 5 functionally independent main parts:

1) Input
2) Memory
3) ALU
4) Output &
5) Control units.
Memory
Arithmetic
Input and
logic
Inierconnection
network
Output Control
o Processor

Figure 1.1 Basic functional units of a computer.

1-32

COMPUTER ORGANIZATION

BASIC OPERATIONAL CONCEPTS
e An Instruction consists of 2 parts, 1) Operation code (Opcode) and 2) Operands.
| OPCODE | OPERANDS
e The data/operands are stored in memory.
e The individual instruction are brought from the memory to the processor.
e Then, the processor performs the specified operation.
e Let us see a typical instruction
ADD LOCA, RO
e This instruction is an addition operation. The following are the steps to execute the instruction:
Step 1: Fetch the instruction from main-memory into the processor.
Step 2: Fetch the operand at location LOCA from main-memory into the processor.

Step 3: Add the memory operand (i.e. fetched contents of LOCA) to the contents of register RO.

Step 4: Store the result (sum) in RO.
e The same instruction can be realized using 2 instructions as:
Load LOCA, R1
Add R1, RO
e The following are the steps to execute the instruction:
Step 1: Fetch the instruction from main-memory into the processor.
Step 2: Fetch the operand at location LOCA from main-memory into the register R1.
Step 3: Add the content of Register R1 and the contents of register RO.
Step 4: Store the result (sum) in RO.

1-32

COMPUTER ORGANIZATION

MAIN PARTS OF PROCESSOR
e The processor contains ALU, control-circuitry and many registers.
e The processor contains ,n” general-purpose registers R, through R..;.
e The IR holds the instruction that is currently being executed.
e The control-unit generates the timing-signals that determine when a given action is to take place.
e The PC contains the memory-address of the next-instruction to be fetched & executed.
e During the execution of an instruction, the contents of PC are updated to point to next instruction.
e The MAR holds the address of the memory-location to be accessed.
e The MDR contains the data to be written into or read out of the addressed location.
e MAR and MDR facilitates the communication with memory.
(IR - Instruction-Register, PC > Program Counter)
(MAR - Memory Address Register, MDR-> Memory Data Register)
STEPS TO EXECUTE AN INSTRUCTION
1) The address of first instruction (to be executed) gets loaded into PC.
2) The contents of PC (i.e. address) are transferred to the MAR & control-unit issues Read signal to
memory.
3) After certain amount of elapsed time, the first instruction is read out of memory and placed into
MDR.
4) Next, the contents of MDR are transferred to IR. At this point, the instruction can be decoded &
executed.
5) To fetch an operand, it's address is placed into MAR & control-unit issues Read signal. As a result,
the operand is transferred from memory into MDR, and then it is transferred from MDR to ALU.
6) Likewise required number of operands is fetched into processor.
7) Finally, ALU performs the desired operation.
8) If the result of this operation is to be stored in the memory, then the result is sent to the MDR.
9) The address of the location where the result is to be stored is sent to the MAR and a Write cycle is
initiated.

10) At some point during execution, contents of PC are incremented to point to next instruction in the

program.

Man memaory

Processor-memony interface

P Ry
Control
B
' - Processor
IE
ALD
B -1

n gencral purpose
regisiers

Figure 1.2 Connedion batween the processor and the main memory.

1-32

COMPUTER ORGANIZATION

BUS STRUCTURE

e A bus is a group of lines that serves as a connecting path for several devices.

e A bus may be lines or wires.

e The lines carry data or address or control signal.

e There are 2 types of Bus structures: 1) Single Bus Structure and 2) Multiple Bus Structure.

1) Single Bus Structure

» Because the bus can be used for only one transfer at a time, only 2 units can actively use the

bus at any given time.

» Bus control lines are used to arbitrate multiple requests for use of the bus.

> Advantages:
1) Low cost &

2) Flexibility for attaching peripheral devices.

2) Multiple Bus Structure

» Systems that contain multiple buses achieve more concurrency in operations.

» Two or more transfers can be carried out at the same time.

> Advantage: Better performance.
> Disadvantage: Increased cost.

Input

Output

Memory

Processar

A

<

e Buffer Registers

Figure 1.3 Single-bus structure.
e The devices connected to a bus vary widely in their speed of operation.
e To synchronize their operational-speed, buffer-registers can be used.

— are included with the devices to hold the information during transfers.
— prevent a high-speed processor from being locked to a slow I/O device during data transfers.

1-32

COMPUTER ORGANIZATION

PERFORMANCE
e The most important measure of performance of a computer is how quickly it can execute programs.
e The speed of a computer is affected by the design of
1) Instruction-set.
2) Hardware & the technology in which the hardware is implemented.
3) Software including the operating system.
e Because programs are usually written in a HLL, performance is also affected by the compiler that
translates programs into machine language. (HLL-> High Level Language).
e For best performance, it is necessary to design the compiler, machine instruction set and hardware in
a co-ordinated way.

elet
us

Main Cache

. Bus
< 2
Figure 1.5 The processor cache.
examine the flow of program instructions and data between the memory & the processor.
¢ At the start of execution, all program instructions are stored in the main-memory.
e As execution proceeds, instructions are fetched into the processor, and a copy is placed in the cache.
e Later, if the same instruction is needed a second time, it is read directly from the cache.
e A program will be executed faster
if movement of instruction/data between the main-memory and the processor is minimized
which is achieved by using the cache.

PROCESSOR CLOCK
e Processor circuits are controlled by a timing signal called a Clock.
e The clock defines regular time intervals called Clock Cycles.
e To execute a machine instruction, the processor divides the action to be performed into a sequence
of basic steps such that each step can be completed in one clock cycle.
e Let P = Length of one clock cycle
R = Clock rate.
e Relation between P and R is given by

=L
P

¢ R is measured in cycles per second.
e Cycles per second is also called Hertz (Hz)

BASIC PERFORMANCE EQUATION
e Let T = Processor time required to executed a program.
N = Actual number of instruction executions.
S = Average number of basic steps needed to execute one machine instruction.
R = Clock rate in cycles per second.
e The program execution time is given by
N=x§
N (1)
e Equl is referred to as the basic performance equation.
e To achieve high performance, the computer designer must reduce the value of T, which means
reducing N and S, and increasing R.
» The value of N is reduced if source program is compiled into fewer machine instructions.
» The value of S is reduced if instructions have a smaller number of basic steps to perform.
» The value of R can be increased by using a higher frequency clock.
e Care has to be taken while modifying values since changes in one parameter may affect the other.

T=

1-32

COMPUTER ORGANIZATION

CLOCK RATE
e There are 2 possibilities for increasing the clock rate R:
1) Improving the IC technology makes logic-circuits faster.
This reduces the time needed to compute a basic step. (IC - integrated circuits).
This allows the clock period P to be reduced and the clock rate R to be increased.
2) Reducing the amount of processing done in one basic step also reduces the clock period P.
e In presence of a cache, the percentage of accesses to the main-memory is small.
Hence, much of performance-gain expected from the use of faster technology can be realized.
The value of T will be reduced by same factor as R is increased ,,.” S & N are not affected.

PERFORMANCE MEASUREMENT
e Benchmark refers to standard task used to measure how well a processor operates.
e The Performance Measure is the time taken by a computer to execute a given benchmark.
e SPEC selects & publishes the standard programs along with their test results for different application
domains. (SPEC - System Performance Evaluation Corporation).
e SPEC Rating is given by
Running fime on the reference computer
Running time on the compater under lest
e SPEC rating = 50 > The computer under test is 50 times as fast asreference-computer.
e The test is repeated for all the programs in the SPEC suite.
Then, the geometric mean of the results is computed.
e Let SPEC, = Rating for program ,i' in the suite.
Overall SPEC rating for the computer is given by

L

SPEC rating = (1‘[sm:.)'

SPEC rating =

where n = no. of programs in the suite.

INSTRUCTION SET: CISC AND RISC

RISC CISC

Simple instructions taking one cycle. Complex instructions taking multiple cycle.
Instructions are executed by hardwired control Instructions are executed by microprogrammed
unit. control unit.

Few instructions. Many instructions.

Fixed format instructions. Variable format instructions.

Few addressing modes, and most instructions Many addressing modes.

have register to register addressing mode.

Multiple register set. Single register set.

Highly pipelined. No pipelined or less pipelined.

Problem 1:
List the steps needed to execute the machine instruction:
Load R2, LOC

in terms of transfers between the components of processor and some simple control commands.
Assume that the address of the memory-location containing this instruction is initially in register PC.
Solution:
. Transfer the contents of register PC to register MAR.
. Issue a Read command to memory.

And, then wait until it has transferred the requested word into register MDR.
. Transfer the instruction from MDR into IR and decode it.
. Transfer the address LOCA from IR to MAR.
. Issue a Read command and wait until MDR is loaded.
. Transfer contents of MDR to the ALU.
. Transfer contents of RO to the ALU.
. Perform addition of the two operands in the ALU and transfer result into RO.
. Transfer contents of PC to ALU.
0. Add 1 to operand in ALU and transfer incremented address to PC.

N =

HOoOONOULTPhW

1-32

COMPUTER ORGANIZATION

Problem 2:
List the steps needed to execute the machine instruction:
Add R4, R2, R3

in terms of transfers between the components of processor and some simple control commands.
Assume that the address of the memory-location containing this instruction is initially in register PC.
Solution:
. Transfer the contents of register PC to register MAR.
. Issue a Read command to memory.

And, then wait until it has transferred the requested word into register MDR.
. Transfer the instruction from MDR into IR and decode it.
. Transfer contents of R1 and R2 to the ALU.
. Perform addition of two operands in the ALU and transfer answer into R3.
. Transfer contents of PC to ALU.
. Add 1 to operand in ALU and transfer incremented address to PC.

N =

NoOouh~,Ww

Problem 3:
(@) Give a short sequence of machine instructions for the task “Add the contents of memory-location A
to those of location B, and place the answer in location C”. Instructions:

Load R/, LOC

and

Store Ri, LOC
are the only instructions available to transfer data between memory and the general purpose registers.
Add instructions are described in Section 1.3. Do not change contents of either location A or B.
(b) Suppose that Move and Add instructions are available with the formats:

Move Locationl, Location2

and

Add Location1, Location2
These instructions move or add a copy of the operand at the second location to the first location,
overwriting the original operand at the first location. Either or both of the operands can be in the
memory or the general-purpose registers. Is it possible to use fewer instructions of these types to
accomplish the task in part (a)? If yes, give the sequence.
Solution:

(a)

Load A, RO

Load B, R1

Add RO, R1

Store R1, C

(b) Yes;
Move B, C
Add A, C

Problem 4:
A program contains 1000 instructions. Out of that 25% instructions requires 4 clock cycles,40%
instructions requires 5 clock cycles and remaining require 3 clock cycles for execution. Find the total
time required to execute the program running in a 1 GHz machine.
Solution:

N = 1000

25% of N= 250 instructions require 4 clock cycles.

40% of N =400 instructions require 5 clock cycles.

35% of N=350 instructions require 3 clock cycles.

T = (N*S)/R= (250*4+400*5+350*3)/1X10° =(1000+2000+1050)/1*10°= 4.05 ps.

1-32

COMPUTER ORGANIZATION

Problem 5:
For the following processor, obtain the performance.

Clock rate = 800 MHz

No. of instructions executed = 1000

Average no of steps needed / machine instruction = 20
Solution:

N=xS§ & -8
I'= X = (1000*20)/800 * 10°=25 micro sec or 25%10™ sec

Problem 6:
(a) Program execution time T is to be examined for a certain high-level language program. The
program can be run on a RISC or a CISC computer. Both computers use pipelined instruction
execution, but pipelining in the RISC machine is more effective than in the CISC machine. Specifically,
the effective value of S in the T expression for the RISC machine is 1.2, bit it is only 1.5 for the CISC
machine. Both machines have the same clock rate R. What is the largest allowable value for N, the
number of instructions executed on the CISC machine, expressed as a percentage of the N value for
the RISC machine, if time for execution on the CISC machine is to be longer than on the RISC
machine?
(b) Repeat Part (a) if the clock rate R for the RISC machine is 15 percent higher than that for the CISC
machine.
Solution:
(@) Let Tr = (Nr X Sk)/Rr & Tc = (Nc X Sc)/Rc be execution times on RISC and CISC processors.
Equating execution times and clock rates, we have
1.2N; = 1.5Nc
Then
Ne/Ne = 1.2/1.5 = 0.8
Therefore, the largest allowable value for Nc¢ is 80% of N..

(b) In this case,
1.2Ng/1.15 = 1.5N/1.00
Then
Ne/Ne =1.2/(1.15 X 1.5) = 0.696
Therefore, the largest allowable value for N¢ is 69.6% of N..

Problem 7:
(@) Suppose that execution time for a program is proportional to instruction fetch time. Assume that
fetching an instruction from the cache takes 1 time unit, but fetching it from the main-memory takes
10 time units. Also, assume that a requested instruction is found in the cache with probability 0.96.
Finally, assume that if an instruction is not found in the cache it must first be fetched from the main-
memory into the cache and then fetched from the cache to be executed. Compute the ratio of program
execution time without the cache to program execution time with the cache. This ratio is called the
speedup resulting from the presence of the cache.
(b) If the size of the cache is doubled, assume that the probability of not finding a requested
instruction there is cut in half. Repeat part (a) for a doubled cache size.
Solution:
(@) Let cache access time be 1 and main-memory access time be 20. Every instruction that is
executed must be fetched from the cache, and an additional fetch from the main-memory must
be performed for 4% of these cache accesses.

Therefore,
8 iup k- %2 11.1
h 01D IRCLOD | B
PR (1.0 1) + {0.04 = 20)

(b)
; ! 1.0 = 20 -
Speedup lactor - 16.7

(1.0 % 1) 4+ (0.02 3 20)

1-32

COMPUTER ORGANIZATION

MODULE 1 (CONT.): MACHINE INSTRUCTIONS &
PROGRAMS

MEMORY-LOCATIONS & ADDRESSES
e Memory consists of many millions of storage cells (flip-flops).
e Each cell can store a bit of information i.e. 0 or 1 (Figure 2.1).
e Each group of n bits is referred to as a word of information, and n is called the word length.
e The word length can vary from 8 to 64 bits.
¢ A unit of 8 bits is called a byte.
e Accessing the memory to store or retrieve a single item of information (word/byte) requires distinct
addresses for each item location. (It is customary to use numbers from 0 through 21 as the
addresses of successive-locations in the memory).
e If 2 = no. of addressable locations;

then 2% addresses constitute the address-space of the computer.

For example, a 24-bit address generates an address-space of 2* locations (16 MB).

|#—— pbits —————-=|

4 = First word

—& = Second word

——= jih word

— » Last word

Figure 2.1 Memory words.

|— 12 hits -

L Sign bit: by, = 0 for positive numbers
by, = | for negative numbers

(a) A signed integer

biis B hits B hits & hits
ASCH ASCIH ASCH ASCH
character character character chamcter

(b} Four characters
Figure 2.2 Examples of encoded information in a 32-bit word.

1-32

COMPUTER ORGANIZATION

BYTE-ADDRESSABILITY

e In byte-addressable memory, successive addresses refer to successive byte locations in the memory.
¢ Byte locations have addresses O, 1, 2

o If the word-length is 32 bits, successive words are located at addresses 0, 4, 8. . with each word
having 4 bytes.

BIG-ENDIAN & LITTLE-ENDIAN ASSIGNMENTS

e There are two ways in which byte-addresses are arranged (Figure 2.3).
1) Big-Endian: Lower byte-addresses are used for the more significant bytes of the word.
2) Little-Endian: Lower byte-addresses are used for the less significant bytes of the word

e In both cases, byte-addresses 0, 4, 8. are taken as the addresses of successive words in the
memory.
Word
address Byte address Byte address
0 0 I 2 3] 3 2 I a
4 E! i) [T 4) f i) 4
il BV U R g | o || 2l | s
(a) Big-endian assignment () Little-endian assignment

Figure 2.3 Byte and word addressing.
Consider a 32-bit integer (in hex): 0x12345678 which consists of 4 bytes: 12, 34, 56, and 78.
» Hence this integer will occupy 4 bytes in memory.
> Assume, we store it at memory address starting 1000.
» On little-endian, memory will look like
Address | Value

1000 78
1001 56
1002 34
1003 12

» On big-endian, memory will look like
Address | Value

1000 12
1001 34
1002 56
1003 78

WORD ALIGNMENT

e Words are said to be Aligned in memory if they begin at a byte-address that is a multiple of the
number of bytes in a word.

e For example,

> If the word length is 16(2 bytes), aligned words begin at byte-addresses 0, 2,4

» If the word length is 64(2 bytes), aligned words begin at byte-addresses 0, 8, 16
e Words are said to have Unaligned Addresses, if they begin at an arbitrary byte-address.

1-32

COMPUTER ORGANIZATION

ACCESSING NUMBERS, CHARACTERS & CHARACTERS STRINGS
e A number usually occupies one word. It can be accessed in the memory by specifying its word
address. Similarly, individual characters can be accessed by their byte-address.
e There are two ways to indicate the length of the string:
1) A special control character with the meaning "end of string" can be used as the last character
in the string.
2) A separate memory word location or register can contain a number indicating the length of
the string in bytes.

MEMORY OPERATIONS
e TwWo memory operations are:
1) Load (Read/Fetch) &
2) Store (Write).
e The Load operation transfers a copy of the contents of a specific memory-location to the processor.
The memory contents remain unchanged.
e Steps for Load operation:
1) Processor sends the address of the desired location to the memory.
2) Processor issues ,read” signal to memory to fetch the data.
3) Memory reads the data stored at that address.
4) Memory sends the read data to the processor.
e The Store operation transfers the information from the register to the specified memory-location.
This will destroy the original contents of that memory-location.
e Steps for Store operation are:
1) Processor sends the address of the memory-location where it wants to store data.
2) Processor issues ,write” signal to memory to store the data.
3) Content of register(MDR) is written into the specified memory-location.

INSTRUCTIONS & INSTRUCTION SEQUENCING

e A computer must have instructions capable of performing 4 types of operations:
1) Data transfers between the memory and the registers (MOV, PUSH, POP, XCHG).
2) Arithmetic and logic operations on data (ADD, SUB, MUL, DIV, AND, OR, NOT).
3) Program sequencing and control (CALL.RET, LOOP, INT).
4) 1/0 transfers (IN, OUT).

1-32

COMPUTER ORGANIZATION

REGISTER TRANSFER NOTATION (RTN)
e The possible locations in which transfer of information occurs are: 1) Memory-location 2) Processor
register & 3) Registers in I/0 device.

Location Hardware Binary Address Example Description

Memory LOC, PLACE, NUM R1 < [LOC] Contents of memory-location LOC
are transferred into register R1.

Processor RO, R1 ,R2 [R3] € [R1]+[R2] Add the contents of register R1 &R2

and places their sum into R3.

I/0 Registers

DATAIN, DATAOUT

R1 < DATAIN

Contents of I/O register DATAIN are
transferred into register R1.

ASSEMBLY LANGUAGE NOTATION
e To represent machine instructions and programs, assembly language format is used.

Assembly Language Format

Description

Move LOC, R1

Transfer data from memory-location LOC to register R1. The contents of LOC
are unchanged by the execution of this instruction, but the old contents of
register R1 are overwritten.

Add R1, R2, R3

Add the contents of registers R1 and R2, and places their sum into register R3.

BASIC INSTRUCTION TYPES

Instruction
Type

Syntax

Example

Description

Instructions
for
Operation
C<-[A]+[B]

Three
Address

Opcode Sourcel,Source2,Destination

Add A,B,C

Add the contents of
memory-locations A & B.
Then, place the result into
location C.

Two Address

Opcode Source, Destination

Add A,B

Add the contents of
memory-locations A & B.
Then, place the result into
location B, replacing the
original contents of this
location.

Operand B is both a source
and a destination.

Move B, C
Add A, C

One Address

Opcode Source/Destination

Load A

Copy contents of memory-
location A into accumulator.

Add B

Add contents of memory-
location B to contents of
accumulator register &
place sum back into
accumulator.

Store C

Copy the contents of the
accumulator into location C.

Load A
Add B
Store C

Zero
Address

Opcode [no Source/Destination]

Push

Locations of all operands
are defined implicitly.

The operands are stored in
a pushdown stack.

Not possible

e Access to data in the registers is much faster than to data stored in memory-locations.

e Let Ri represent a general-purpose register. The instructions:

Load A,Ri
Store Ri,A
Add A,Ri

are generalizations of the Load, Store and Add Instructions for the single-accumulator case, in which
register Ri performs the function of the accumulator.
e In processors, where arithmetic operations as allowed only on operands that are in registers, the task
C<-[A]+[B] can be performed by the instruction sequence:

Move A,Ri
Move B,Rj
Add Ri,Rj

Move Rj,C

1-32

COMPUTER ORGANIZATION

INSTRUCTION EXECUTION & STRAIGHT LINE SEQUENCING
e The program is executed as follows:
1) Initially, the address of the first instruction is loaded into PC (Figure 2.8).
2) Then, the processor control circuits use the information in the PC to fetch and execute
instructions, one at a time, in the order of increasing addresses. This is called Straight-Line
sequencing.
3) During the execution of each instruction, PC is incremented by 4 to point to next instruction.
e There are 2 phases for Instruction Execution:
1) Fetch Phase: The instruction is fetched from the memory-location and placed in the IR.
2) Execute Phase: The contents of IR is examined to determine which operation is to be
performed. The specified-operation is then performed by the processor.

i Move NUMIRO
i+4 © Add NUM2RO
Address Contents i+8 Add NUM3.RO
Begin execution here —== | Move ARD .
3-instruction .
i+4 Add BRO program
i+8 Move ROC [+dn-4 Add NUMnRO
. i+4n Move ROSUM
A -—
SUM
B Deata for NUMI
the program NUM2
C —-—
NUMn
Figure 2.8 A program for C « [A] + [B]. Figure 2.9 A siraightline progrom for odding n numbers.

Program Explanation

e Consider the program for adding a list of n numbers (Figure 2.9).

e The Address of the memory-locations containing the n numbers are symbolically given as NUM1,
NUM2.....NUMn.

e Separate Add instruction is used to add each number to the contents of register RO.

o After all the numbers have been added, the result is placed in memory-location SUM.

1-32

COMPUTER ORGANIZATION

BRANCHING
e Consider the task of adding a list of ,n” numbers (Figure 2.10).
e Number of entries in the list ,n” is stored in memory-location N.
e Register R1 is used as a counter to determine the number of times the loop is executed.
e Content-location N is loaded into register R1 at the beginning of the program.
e The Loop is a straight line sequence of instructions executed as many times as needed.
The loop starts at location LOOP and ends at the instruction Branch>0.
e During each pass,
— address of the next list entry is determined and
— that entry is fetched and added to RO.
e The instruction Decrement R1 reduces the contents of R1 by 1 each time through the loop.
e Then Branch Instruction loads a new value into the program counter. As a result, the processor
fetches and executes the instruction at this new address called the Branch Target.
e A Conditional Branch Instruction causes a branch only if a specified condition is satisfied. If the
condition is not satisfied, the PC is incremented in the normal way, and the next instruction in
sequential address order is fetched and executed.

Move NRI
Clear RO
[Loop
|, Determine address of $
:j’ :Ne:l' number and add -
Program | Next” number to RO
loap
Decrement R1
Branchs0 LOOP
Move RO,5UM
SUM
N n
NUMI
NUM2
NUMn

Figure 2.10 Using o loop to add n numbars,

CONDITION CODES
e The processor keeps track of information about the results of various operations. This is
accomplished by recording the required information in individual bits, called Condition Code Flags.
e These flags are grouped together in a special processor-register called the condition code register (or
statue register).
e Four commonly used flags are:

1) N (negative) set to 1 if the result is negative, otherwise cleared to 0.

2) Z (zero) set to 1 if the result is 0; otherwise, cleared to 0.

3) V (overflow) set to 1 if arithmetic overflow occurs; otherwise, cleared to 0.

4) C (carry) set to 1 if a carry-out results from the operation; otherwise cleared to 0.

1-32

COMPUTER ORGANIZATION

1-32

COMPUTER ORGANIZATION

ADDRESSING MODES

e The different ways in which the location of an operand is specified in an instruction are referred to as

Addressing Modes (Table 2.1).

Toble 2.1 Genaric addressing modes

Name Assembiler syntax Addressing function

Immediate #alue Operand = Value

Register Ri EA =Ri

Absolute (Direct) LOC EA=10C

[ndirect " (Ri) EA = [Ri}

{Loc; EA = [LOC)

- Index X(R1) EA=[Ril+X

Base with index (Ri,Rj) EA = [Ri] + [Rj]

Base with index X(Ri R} ‘EA=[Ri]+[RiI+X

and offset

Relative X(PC) EA=[PC]+X

Autoincrement R+ EA = [Ril;
Increment Bi

Antodecrement ~(Ri) Decremest Ri;
EA = [Ri]

EA = effective oddress

Valve = a sigaed rumber

IMPLEMENTATION OF VARIABLE AND CONSTANTS
e Variable is represented by allocating a memory-location to hold its value.
e Thus, the value can be changed as needed using appropriate instructions.
e There are 2 accessing modes to access the variables:

1) Register Mode

2) Absolute Mode
Register Mode
e The operand is the contents of a register.
e The name (or address) of the register is given in the instruction.
e Registers are used as temporary storage locations where the data in a register are accessed.
e For example, the instruction

Move R1, R2 ;Copy content of register R1 into register R2.

Absolute (Direct) Mode
e The operand is in a memory-location.
e The address of memory-location is given explicitly in the instruction.
e The absolute mode can represent global variables in the program.
e For example, the instruction

Move LOC, R2 ;Copy content of memory-location LOC into register R2.

Immediate Mode
e The operand is given explicitly in the instruction.
e For example, the instruction
Move #200, RO ;Place the value 200 in register RO.
e Clearly, the immediate mode is only used to specify the value of a source-operand.

1-32

COMPUTER ORGANIZATION

INDIRECTION AND POINTERS
¢ Instruction does not give the operand or its address explicitly.
e Instead, the instruction provides information from which the new address of the operand can be
determined.
e This address is called Effective Address (EA) of the operand.
Indirect Mode
e The EA of the operand is the contents of a register(or memory-location).
e The register (or memory-location) that contains the address of an operand is called a Pointer.
e We denote the indirection by
— name of the register or
— new address given in the instruction.
E.g: Add (R1),R0O0 ;The operand is in memory. Register R1 gives the effective-address (B) of
the operand. The data is read from location B and added to contents of

register RO.
Add (RI1),RO Add (A)RO
: ! Main :
. Memory .
B Operand A B
R B Register B Operand
{2} Through a general-purpose register {b) Through a memory location

Figure 2.11 Indirect oddressing.

e To execute the Add instruction in fig 2.11 (a), the processor uses the value which is in register R1, as
the EA of the operand.
e It requests a read operation from the memory to read the contents of location B. The value read is
the desired operand, which the processor adds to the contents of register RO.
e Indirect addressing through a memory-location is also possible as shown in fig 2.11(b). In this case,
the processor first reads the contents of memory-location A, then requests a second read operation
using the value B as an address to obtain the operand.

Address Contents

Move N.RI
Move #NUMI1 R2 Initialization
Clear RO
—= LOOP Add (RZ),R0
Add #4102

Decrement Rl
Branch>0 LOOP
Move RO,SUM

Figure 2.12 Use of indirect addrassing in the program of Figure 2.10.

Program Explanation

¢ In above program, Register R2 is used as a pointer to the numbers in the list, and the operands are accessed
indirectly through R2.

¢ The initialization-section of the program loads the counter-value n from memory-location N into R1 and uses the
immediate addressing-mode to place the address value NUM1, which is the address of the first number in the list,
into R2. Then it clears RO to O.

e The first two instructions in the loop implement the unspecified instruction block starting at LOOP.

e The first time through the loop, the instruction Add (R2), RO fetches the operand at location NUM1 and adds it to
RO.

e The second Add instruction adds 4 to the contents of the pointer R2, so that it will contain the address value
NUM2 when the above instruction is executed in the second pass through the loop.

1-32

COMPUTER ORGANIZATION

INDEXING AND ARRAYS

¢ A different kind of flexibility for accessing operands is useful in dealing with lists and arrays.
Index mode
e The operation is indicated as X(Ri)
where X=the constant value which defines an offset(also called a displacement).

Ri=the name of the index register which contains address of a new location.

e The effective-address of the operand is given by EA=X+[Ri]
e The contents of the index-register are not changed in the process of generating the effective-

address.

e The constant X may be given either

— as an explicit number or

— as a symbolic-name representing a numerical value.

Add 20{RI1),R2
T 1000 1000
20 = offset
-L 1020 Operand
(a) Offset is given as a constant

address to the location where the operand is found.

e To find EA of operand:

Eg: Add 20(R1), R2

N

LIST
LIST +4

LIST+8
LIST+ 12
LIST + 16

Rl

Figure 213 Indexed addressing.
e Fig(a) illustrates two ways of using the Index mode. In fig(a), the index register, R1, contains the
address of a memory-location, and the value X defines an offset(also called a displacement) from this

EA=>1000+20=1020
¢ An alternative use is illustrated in fig(b). Here, the constant X corresponds to a memory address, and
the contents of the index register define the offset to the operand. In either case, the effective-address
is the sum of two values; one is given explicitly in the instruction, and the other is stored in aregister.

Student 1D

Test

Tea12

Test 3

Smdent D

Test 1

Test 2

Test 3

> Stmdent 1

> Stdent 2

*

*

Figure 214 A list of students’ marks.

Add T000(R1)R2

-
-

Operand

(b) Offset s in the index regisier

Move
Clear
Clear
Clear
Move
LOOF Add
Add
Add
Add
Decrement
Branch=0
Move
Move
Move

#LIST.RO
Rl

R2

B3

NRd
4(RO),R1
8(RO),R2
12(R0),R3
#16,R0
R4

LOOF
RLSUMI
R23UM2
R3,5UM3

Figure 2.15 Indexed addressing used in accessing

test scares in the list in Figure 2.14,

1-32

COMPUTER ORGANIZATION

Base with Index Mode
¢ Another version of the Index mode uses 2 registers which can be denoted as
(Ri, Rj)
e Here, a second register may be used to contain the offset X.
e The second register is usually called the base register.
e The effective-address of the operand is given by EA=[Ri]+[Rj]
e This form of indexed addressing provides more flexibility in accessing operands because
both components of the effective-address can be changed.
Base with Index & Offset Mode
e Another version of the Index mode uses 2 registers plus a constant, which can be denoted as
X(Ri, Rj)
e The effective-address of the operand is given by EA=X+[Ri]+[Rj]
e This added flexibility is useful in accessing multiple components inside each item in a record, where
the beginning of an item is specified by the (Ri, Rj) part of the addressing-mode. In other words, this
mode implements a 3-dimensional array.

RELATIVE MODE
e This is similar to index-mode with one difference:

The effective-address is determined using the PC in place of the general purpose register Ri.
e The operation is indicated as X(PC).
e X(PC) denotes an effective-address of the operand which is X locations above or below the current
contents of PC.
¢ Since the addressed-location is identified "relative" to the PC, the name Relative mode is associated
with this type of addressing.
¢ This mode is used commonly in conditional branch instructions.
¢ An instruction such as

Branch > 0 LOOP ;Causes program execution to go to the branch target location

identified by name LOOP if branch condition is satisfied.

ADDITIONAL ADDRESSING MODES
1) Auto Increment Mode
> Effective-address of operand is contents of a register specified in the instruction (Fig: 2.16).
» After accessing the operand, the contents of this register are automatically incremented to
point to the next item in a list.
» Implicitly, the increment amount is 1.
» This mode is denoted as
(Ri)+ ;where Ri=pointer-register.
2) Auto Decrement Mode
» The contents of a register specified in the instruction are first automatically decremented and
are then used as the effective-address of the operand.
» This mode is denoted as
-(Ri) ;where Ri=pointer-register.
» These 2 modes can be used together to implement an important data structure called a stack.

Move N.R1 }
Move #NUMI1 R2 Initialization
Clear RO
—= LDOP Add {(R2)+ R0
Decrement Rl
Branch=0 LOOP
Maove ROSUM

Figure 2.16 The Autoincrement addressing mode used in the program of Figure 2,12,

1-32

COMPUTER ORGANIZATION

ASSEMBLY LANGUAGE
e We generally use symbolic-names to write a program.
e A complete set of symbolic-names and rules for their use constitute an Assembly Language.
e The set of rules for using the mnemonics in the specification of complete instructions and programs is
called the Syntax of the language.
e Programs written in an assembly language can be automatically translated into a sequence of
machine instructions by a program called an Assembler.
e The user program in its original alphanumeric text formal is called a Source Program, and the
assembled machine language program is called an Object Program.
For example:
MOVE RO,SUM ;The term MOVE represents OP code for operation performed by instruction.
ADD #5,R3 ;Adds number 5 to contents of register R3 & puts the result back into registerR3.

ASSEMBLER DIRECTIVES
¢ Directives are the assembler commands to the assembler concerning the program being assembled.
e These commands are not translated into machine opcode in the object-program.

Memory Addressing
address or data
label Operation information
Assembler directives SUM EQU 200
ORIGIN 204
N DATAWORD 100
NUM1 RESERVE 400
ORIGIN 100
Statements that START MOVE N.R1
generate MOVE #NUM1,R2
machine CLR RO
instructions LOOP ADD (R2) RO
ADD #4R2
DEC R1
BGTZ LOOP
MOVE RO,SUM
Assembler directives RETURN
END START

Fiqure 2.18 Assembly language representation for the program in Figure 2.17.

¢ EQU informs the assembler about the value of an identifier (Figure: 2.18).

Ex: SUM EQU 200 ;Informs assembler that the name SUM should be replaced by the value 200.
e ORIGIN tells the assembler about the starting-address of memory-area to place the data block.

Ex: ORIGIN 204 ;Instructs assembler to initiate data-block at memory-locations starting from 204.
e DATAWORD directive tells the assembler to load a value into the location.

Ex: N DATAWORD 100 ;Informs the assembler to load data 100 into the memory-location N(204).
e RESERVE directive is used to reserve a block of memory.

Ex: NUM1 RESERVE 400 ,declares a memory-block of 400 bytes is to be reserved for data.
e END directive tells the assembler that this is the end of the source-program text.
e RETURN directive identifies the point at which execution of the program should be terminated.
e Any statement that makes instructions or data being placed in a memory-location may be given a
label. The label(say N or NUM1) is assigned a value equal to the address of that location.

GENERAL FORMAT OF A STATEMENT
e Most assembly languages require statements in a source program to be written in the form:
| Label | Operation | Operands | Comment |
1) Label is an optional name associated with the memory-address where the machine language
instruction produced from the statement will be loaded.
2) Operation Field contains the OP-code mnemonic of the desired instruction or assembler.
3) Operand Field contains addressing information for accessing one or more operands,
depending on the type of instruction.
4) Comment Field is used for documentation purposes to make program easier to understand.

1-32

COMPUTER ORGANIZATION

ASSEMBLY AND EXECUTION OF PRGRAMS
e Programs written in an assembly language are automatically translated into a sequence of machine
instructions by the Assembler.
e Assembler Program
— replaces all symbols denoting operations & addressing-modes with binary-codes used in
machine instructions.
— replaces all names and labels with their actual values.
— assigns addresses to instructions & data blocks, starting at address given in ORIGIN directive
— inserts constants that may be given in DATAWORD directives.
— reserves memory-space as requested by RESERVE directives.
e Two Pass Assembler has 2 passes:
1) First Pass: Work out all the addresses of labels.
> As the assembler scans through a source-program, it keeps track of all names of numerical-
values that correspond to them in a symbol-table.
2) Second Pass: Generate machine code, substituting values for the labels.
» When a name appears a second time in the source-program, it is replaced with its value from
the table.
e The assembler stores the object-program on a magnetic-disk. The object-program must be loaded
into the memory of the computer before it is executed. For this, a Loader Program is used.
e Debugger Program is used to help the user find the programming errors.
e Debugger program enables the user
— to stop execution of the object-program at some points of interest &
— to examine the contents of various processor-registers and memory-location.

1-32

COMPUTER ORGANIZATION

BASIC INPUT/OUTPUT OPERATIONS
e Consider the problem of moving a character-code from the keyboard to the processor (Figure: 2.19).
For this transfer, buffer-register DATAIN & a status control flags(SIN) are used.
e When a key is pressed, the corresponding ASCII code is stored in a DATAIN register associated with
the keyboard.
» SIN=1 > When a character is typed in the keyboard. This informs the processor that a valid
character is in DATAIN.
» SIN=0 > When the character is transferred to the processor.
e An analogous process takes place when characters are transferred from the processor to the display.
For this transfer, buffer-register DATAOUT & a status control flag SOUT are used.
» SOUT=1 > When the display is ready to receive acharacter.
> SOUT=0 > When the character is being transferred to DATAOUT.
e The buffer registers DATAIN and DATAOUT and the status flags SIN and SOUT are part of circuitry
commonly known as a device interface.

Processor DATAIN DATAOUT
Csin [] sour
Keyboard Display

Figure 2.19 Bus connection for processor, keyboard, and disploy.
MEMORY-MAPPED I/O

Program to read a line of characters and display it

Mave #LOC RO Initialize pointer register RO to point to the
address of the first location in memory
where the characters are to be stored.

READ TestBit #3,INSTATUS Wait for a character to be entered

Branch=0 READ in the keyboard buffer DATAIN.

MoveByte DATAIN,(RO) Transfer the character from DATAIN into
the memory (this clears SIN to 0).

ECHO TestBit #3,0UTSTATUS Wait for the display to become ready.

Branch=0 ECHO

MoveByte (R0),DATAOUT Move the character just read to the display
buffer register (this clears SOUT to 0).

Compare #CR,(R0)+ Check if the character just read is CR.
{carriage return). If it is not CR, then

Branch#) READ branch back and read another character.,
Also, increment the pointer to store the
next character.

Figure 2.20 A program that reads o line of characters and displays it.

e Some address values are used to refer to peripheral device buffer-registers such as DATAIN &
DATAOUT.
¢ No special instructions are needed to access the contents of the registers; data can be transferred
between these registers and the processor using instructions such as Move, Load or Store.
e For example, contents of the keyboard character buffer DATAIN can be transferred to register R1 in
the processor by the instruction

MoveByte DATAIN,R1
e The MoveByte operation code signifies that the operand size is a byte.
e The Testbit instruction tests the state of one bit in the destination, where the bit position to be
tested is indicated by the first operand.

1-32

COMPUTER ORGANIZATION

STACKS

e A stack is a special type of data structure where elements are inserted from one end and elements
are deleted from the same end. This end is called the top of the stack (Figure: 2.14).

e The various operations performed on stack:

1) Insert: An element is inserted from top end. Insertion operation is called push operation.

2) Delete: An element is deleted from top end. Deletion operation is called pop operation.
e A processor-register is used to keep track of the address of the element of the stack that is at the top
at any given time. This register is called the Stack Pointer (SP).
e If we assume a byte-addressable memory with a 32-bit word length,

1) The push operation can be implemented as
Subtract #4, SP

Move NEWITEM, (SP)

2) The pop operation can be implemented as
Move (SP), ITEM
Add #4, SP
¢ Routine for a safe pop and push operation as follows:

SAFEPOFP Compare #2000,5P
Brapch>0 EMPTYERROR

Check to see if the stack pointer contains
an-address value greater than 2000, If it
does, the stack is empty. Branch to the
routine EMPTYERROR for appropriate
action.

Move (SP)+,ITEM Otherwise, pop the tap of the stack into
memery location ITEM.
(a) Routine for a safe pop operation

SAFEPUSH Compare #1500,SP
Branch<0 FULLERROR

Move NEWITEM,(SP)

Check to see if the stack pointer

contains an address value equal

to or less than 1500. If it does, the
stack is full. Branch to the routine
FULLERROR for appropriate action.

Otherwise, push the element in memory

location NEWITEM onto the stack.

(b} Routine for a safe push operation
Figure 2.23 Checking for empty and hll errors in pop and push operatians.

0
Stack
pointer
register T
Current
2 S .
Sk 28 top element
I7
39
Suck <
| BOTTOM I ~— S
2F 1
Figure 2.14 A stack of words in the memory.

1-32

COMPUTER ORGANIZATION

QUEUE
e Data are stored in and retrieved from a queue on a FIFO basis.
¢ Difference between stack and queue?
1) One end of the stack is fixed while the other end rises and falls as data are pushed and
popped.
2) In stack, a single pointer is needed to keep track of top of the stack at any given time.
In queue, two pointers are needed to keep track of both the front and end for removal
and insertion respectively.
3) Without further control, a queue would continuously move through the memory of a
computer in the direction of higher addresses. One way to limit the queue to a fixed region in
memory is to use a circular buffer.

SUBROUTINES
¢ A subtask consisting of a set of instructions which is executed many times is called a Subroutine.
e A Call instruction causes a branch to the subroutine (Figure: 2.16).
¢ At the end of the subroutine, a return instruction is executed
e Program resumes execution at the instruction immediately following the subroutine call
e The way in which a computer makes it possible to call and return from subroutines is referred to as
its Subroutine Linkage method.
e The simplest subroutine linkage method is to save the return-address in a specific location, which
may be a register dedicated to this function. Such a register is called the Link Register.
e When the subroutine completes its task, the Return instruction returns to the calling-program by
branching indirectly through the link-register.
e The Call Instruction is a special branch instruction that performs the following operations:

— Store the contents of PC into link-register.

— Branch to the target-address specified by the instruction.
e The Return Instruction is a special branch instruction that performs the operation:

— Branch to the address contained in the link-register.

Memory g Memory : 7
location Calling program location Subrouting SUB
200 Call SUB _ - 000 first instruction

204 nexl instruction ———
Return
| 00D
PC 204
Link 204
Call Return

Figure 2.16 Subroutine linkage using a link register.

1-32

COMPUTER ORGANIZATION

SUBROUTINE NESTING AND THE PROCESSOR STACK
e Subroutine Nesting means one subroutine calls another subroutine.
¢ In this case, the return-address of the second call is also stored in the link-register, destroying its
previous contents.
e Hence, it is essential to save the contents of the link-register in some other location before calling
another subroutine. Otherwise, the return-address of the first subroutine will be lost.
e Subroutine nesting can be carried out to any depth. Eventually, the last subroutine called completes
its computations and returns to the subroutine that called it.
e The return-address needed for this first return is the last one generated in the nested call sequence.
That is, return-addresses are generated and used in a LIFO order.
e This suggests that the return-addresses associated with subroutine calls should be pushed onto a
stack. A particular register is designated as the SP(Stack Pointer) to be used in this operation.
e SP is used to point to the processor-stack.
¢ Call instruction pushes the contents of the PC onto the processor-stack.

Return instruction pops the return-address from the processor-stack into the PC.

PARAMETER PASSING

e The exchange of information between a calling-program and a subroutine is referred to as
Parameter Passing (Figure: 2.25).

e The parameters may be placed in registers or in memory-location, where they can be accessed by
the subroutine.

e Alternatively, parameters may be placed on the processor-stack used for saving the return-address.
e Following is a program for adding a list of numbers using subroutine with the parameters passed
through registers.

Calling program
Maowe M.R1 R1 serves as a counter,
Move #NUM1 B2 K2 points to the list.
Call LISTADD Call subroutine,
Move RO,SUM Save result.
Subroutine
LISTADD Clear RO Initialize sum to 0.
LOOP Add (R2)+ R0 Add eptry from list,
Decrement HI1
Branch>0 LOOP
Return Return to calling program.

Figure .25 Program of Figure 2.16 written os a subroutine; paromedars passed through registers,

1-32

COMPUTER ORGANIZATION

STACK FRAME

e Stack Frame refers to locations that constitute a private work-space for the subroutine.

e The work-space is

— created at the time the subroutine is entered &

— freed up when the subroutine returns control to the calling-program (Figure: 2.26).

Program for adding a list of numbers using subroutine with

the parameters passed to stack.

Assume top of stack is at level 1 below.
Move #NUML,—(8P) Push parameters onto stack,
Move N,~(SF}
Call LISTADD Call subroutine
(top of stack at level 2),
Move 4(5P),5UM Save result.
Add #8,5P Restore top of stack
{top of stack at level 1).
LISTADD MoveMultiple RO-R2,—(SP) Save registers
(t0p of stack at level 3). Levdd —» (R2]
Move 16(5P),R1 Initialize counter to n. [R1]
Move 20(SF),R2 Initialize pointer to the lst,
Clear RO Initialize sum to 0. (RO
LOOP Add (R2)+,R0 Add entry from list. Level 2 —+ | Return address
Decrement Rl e
Branch>{) LOOP
Move RO0,20(SP) Put result on the stack. NUM1L
Movelultiple (SP)4+R0-R2 Restore registers. Level]l —s
Return Return to calling program.
(&) Calling program and subroutine {b) Top of stack at various times

Figure 2,26 Progrom of Figure 2.16 writlen os o subrouline; porometers passed on the stack.

{sms;am) - saved [RL]
saved [RO]
localvar3
localvar2
localvarl Stack
o frame
(frame pointer) saved [FF] f
Renmrn address subroutine
param|
pararn2
parmm?
paramd
=—— Old TOS

Figure 2.27 A subroutine stock frome example.

e Fig: 2.27 show an example of a commonly used layout for information in a stack-frame.

1-32

COMPUTER ORGANIZATION

e Frame Pointer (FP) is used to access the parameters passed
— to the subroutine &
— to the local memory-variables.

e The contents of FP remains fixed throughout the execution of the subroutine, unlike stack-pointer SP,
which must always point to the current top element in the stack.
Operation on Stack Frame
e Initially SP is pointing to the address of oldTOS.
e The calling-program saves 4 parameters on the stack (Figure 2.27).
e The Call instruction is now executed, pushing the return-address onto the stack.
e Now, SP points to this return-address, and the first instruction of the subroutine is executed.
e Now, FP is to be initialized and its old contents have to be stored. Hence, the first 2 instructions in
the subroutine are:

Move FP,-(SP)

Move SP,FP
e The FP is initialized to the value of SP i.e. both FP and SP point to the saved FP address.
e The 3 local variables may now be pushed onto the stack. Space for local variables is allocated by
executing the instruction

Subtract #12,SP
¢ Finally, the contents of processor-registers RO and R1 are saved in the stack. At this point, the stack-
frame has been set up as shown in the fig 2.27.
e The subroutine now executes its task. When the task is completed, the subroutine pops the saved
values of R1 and RO back into those registers, removes the local variables from the stack frame by
executing the instruction.

Add #12, SP
¢ And subroutine pops saved old value of FP back into FP. At this point, SP points to return-address, so
the Return instruction can be executed, transferring control back to the calling-program.

1-32

COMPUTER ORGANIZATION

STACK FRAMES FOR NESTED SUBROUTINES
e Stack is very useful data structure for holding return-addresses when subroutines are nested.
e When nested subroutines are used; the stack-frames are built up in the processor-stack.

Program to illustrate stack frames for nested subroutines

Memeory .

location Instructions Comments

Main program

2000 Move PARAM2,—(5P) Place parameters on stack.
2004 Move PARAMI1,—(SP)

2008 Call SUB1

012 Move (SP),RESULT Store result.

2016 Add #8,5F Restore stack level.

2020 next instruction

First subroutine

2100 SUB1 Mowe FP,—(5P) Save frame pointer register.

2104 Move SPFFP Load the frame pointer.

2108 MoveMultiple RO-R3,—(SP) Save registers.

22 Move B(FP),RO0 Get first parameter.
Move 12(FP),R1 Get second parameter.
Move PARAMS,—(SP) Place a parameter on stack. A

2160 Call SUB2 [RL] from SUB1
: frame
. FP —= [FPF] from SUB1 b for
Move R3,8(FP) Place answer on stack. " wﬂggﬂ?
MoveMultiple (SP)+R0-R3 Restore registers. 164 utine,
Move {SP)+FF Restore frame pointer register. —
Ret Return to Main program. 5

o : [R3] from Main 1
Second subroutine [R2] from Main
R1] from Mai

3000 SUB2 Move FP,~(SP) Save frame poluter register. tR1] from Mein Stack
Move SPFP Load the frame pointer. [R] from Main . &?mg
MoveMultiple RO-R1,—(SP) Save registers RO and R1. - r—p—— e
Move B{FP).RO0 Get the parameter. subroutine
: w12
Move R1,8(FP) Place SUB2 result on stack. param]
MoveMultiple (SP)+,R0-Rl1 Restore registers RO and R1, >
Move (SP)+FP Restore frame pointer register. /
Return Return to Subroutize 1. =—0ld TOS

Figure 2.28 Nesied subroutines. Figure 2.29 Stack fromes for Figure 2.28.

The Flow of Execution is as follows:

e Main program pushes the 2 parameters param2 and param1 onto the stack and then calls SUB1.

e SUB1 has to perform an operation & send result to the main-program on the stack (Fig:2.28 & 29).

e During the process, SUB1 calls the second subroutine SUB2 (in order to perform some subtask).

o After SUB2 executes its Return instruction; the result is stored in register R2 by SUB1.

e SUB1 then continues its computations & eventually passes required answer back to main-program on the stack.
¢ When SUB1 executes return statement, the main-program stores this answers in memory-location RESULT and
continues its execution.

1-32

COMPUTER ORGANIZATION

LOGIC INSTRUCTIONS
¢ Logic operations such as AND, OR, and NOT applied to individual bits.
e These are the basic building blocks of digital-circuits.
e This is also useful to be able to perform logic operations is software, which is done using instructions
that apply these operations to all bits of a word or byte independently and in parallel.
e For example, the instruction
Not dst

SHIFT AND ROTATE INSTRUCTIONS
e There are many applications that require the bits of an operand to be shifted right or left some
specified number of bit positions.
e The details of how the shifts are performed depend on whether the operand is a signed number or
some more general binary-coded information.
e For general operands, we use a logical shift.

For a number, we use an arithmetic shift, which preserves the sign of the number.
LOGICAL SHIFTS
e Two logical shift instructions are

1) Shifting left (LShiftL) &

2) Shifting right (LShiftR).
e These instructions shift an operand over a number of bit positions specified in a count operand
contained in the instruction.

-~ C |=— R3 |0 0 —= R3 = C |-
huj'cm:: |[]IJJ{]-~~[]II| before:[0 1 1 1 O - - - 0O 1 1 El

::t'lu:r:II| || 1 0 - - -0 1 1 0 u| at'tur:l[] o011 10 - - . []| E|

(a) Logical shift l=ft LShiftL R3,#2 (b} Logical shift right LshiftR A3, #2

- e

ae: [1 1 100 1 1 - - - 0] |I|

(c) Arithmetic shift right AShiftR R3, #2
Figure 2.23 logical and arithmetic shift instructions.

Move #LOC, RO R0 points to data.
MoweByte (RO)+,R1 Load first byte into R1.
LSWfil. #4R1 Shift left by 4 bit positions.
MoveByte (RO),R2 Load second byte into B2,
And #8F R2 Eliminate high-order bite.
Or R1,R2 Coneatenate the BCD digits.

MoveBvte R2PACKED Store the result.
Figure 2.31 A rouline hat packs two BCD digts,

1-32

COMPUTER ORGANIZATION

ROTATE OPERATIONS

¢ In shift operations, the bits shifted out of the operand are lost, except for the last bit shifted out

which is retained in the Carry-flag C.
e To preserve all bits, a set of rotate instructions can be used.

e They move the bits that are shifted out of one end of the operand back into the other end.
e Two versions of both the left and right rotate instructions are usually provided.

In one version, the bits of the operand is simply rotated.
In the other version, the rotation includes the C flag.

-~ C |« R3
before: 01 1 10 01 1
after: |I| 1 1 0 01 1 0 1
(a) Rotate left without carry RotateL R3, #2
LC | R3 -J

before: | 0 | 01 1 |

after:

1 1 1 0

(o) Rotate left with carry

RotateLC R3, #2

before: o 1 1 1 0 o1 1 EI
after: I 101 1 10 0 [1]
(c) Rotate right without carry RotateR R3, #2
- R3 = C J

before:

after:

0 |J|

(d) Rotate right with carry

Figure 2,25

RotateRC R3, #2

Rotate instructions.

1-32

COMPUTER ORGANIZATION

ENCODING OF MACHINE INSTRUCTIONS

e To be executed in a processor, an instruction must be encoded in a binary-pattern. Such encoded

instructions are referred to as Machine Instructions.

e The instructions that use symbolic-names and acronyms are called assembly language instructions.

¢ We have seen instructions that perform operations such as add, subtract, move, shift, rotate, and

branch. These instructions may use operands of different sizes, such as 32-bit and 8-bit numbers.

e Let us examine some typical cases.

The instruction
Add R1, R2 ;Has to specify the registers R1 and R2, in addition to the OP code. If the

processor has 16 registers, then four bits are needed to identify each register.
Additional bits are needed to indicate that the Register addressing-mode is used
for each operand.

The instruction
Move 24(R0), R5 ;Requires 16 bits to denote the OP code and the two registers, and
some bits to express that the source operand uses the Index
addressing mode and that the index value is 24.
e In all these examples, the instructions can be encoded in a 32-bit word (Fig 2.39).
e The OP code for given instruction refers to type of operation that is to be performed.
e Source and destination field refers to source and destination operand respectively.
e The "Other info" field allows us to specify the additional information that may be needed such as an
index value or an immediate operand.
e Using multiple words, we can implement complex instructions, closely resembling operations in high-
level programming languages. The term complex instruction set computers (CISC) refers to processors
that use
e CISC approach results in instructions of variable length, dependent on the number of operands and
the type of addressing modes used.
e In RISC (reduced instruction set computers), any instruction occupies only one word.
e The RISC approach introduced other restrictions such as that all manipulation of data must be done
on operands that are already in registers.
Ex: Add R1,R2,R3
e In RISC type machine, the memory references are limited to only Load/Store operations.

B 7 7 10

OP code Source Diest Other info

(a) One-word instruction

OP code Source Dest Other info
Memory addressTmmedisie operand
(b} Two-word instruction

OF code Ri Ry Rk {kther info

(c) Three-operand instruction
Figure 2.39 Encoding inskructions info 32-bit words.

1-32

COMPUTER ORGANIZATION

Problem 1:
Write a program that can evaluate the expression A*B+C*D In a single-accumulator processor.
Assume that the processor has Load, Store, Multiply, and Add instructions and that all values fit in the
accumulator
Solution:
A program for the expression is:
Load A
Multiply B
Store RESULT
Load C
Multiply D
Add RESULT
Store RESULT

Problem 2:
Registers R1 and R2 of a computer contains the decimal values 1200 and 4600. What is the effective-
address of the memory operand in each of the following instructions?

(a) Load 20(R1), R5

(b) Move #3000,R5

(c) Store R5,30(R1,R2)

(d) Add -(R2),R5

(e) Subtract (R1)+,R5

Solution:
(a) EA = [R1]+0ffset=1200+20 = 1220
(b) EA = 3000

(c) EA = [R1]+[R2]+Offset = 1200+4600+30=5830
(d) EA = [R2]-1 = 4599
(e) EA = [R1] = 1200

Problem 3:
Registers R1 and R2 of a computer contains the decimal values 2900 and 3300. What is the effective-
address of the memory operand in each of the following instructions?
(a) Load R1,55(R2)
(b) Move #2000,R7
(c) Store 95(R1,R2),R5
(d) Add (R1)+,R5
(e) Subtract-(R2),R5
Solution:
a) Load R1,55(R2) - This is indexed addressing mode. So EA =554+R2=554+3300=3355.
b) Move #2000,R7 - This is an immediate addressing mode. So, EA =2000
c) Store 95(R1,R2),R5 = This is a variation of indexed addressing mode, in which contents of 2
registers are added with the offset or index to generate EA. So,
95+R1+R2=95+2900+3300=6255.
d) Add (R1)+,R5 = This is Autoincrement mode. Contents of R1 are the EA so, 2900 is the EA.
e) Subtract -(R2),R5 - This is Auto decrement mode. Here, R2 is subtracted by 4 bytes
(assuming 32-bt processor) to generate the EA, so, EA= 3300-4=3296.

Problem 4:
Given a binary pattern in some memory-location, is it possible to tell whether this pattern represents a
machine instruction or a number?
Solution:
No; any binary pattern can be interpreted as a number or as an instruction.

1-32

COMPUTER ORGANIZATION

Problem 5:
Both of the following statements cause the value 300 to be stored in location 1000, but at different
times.

ORIGIN 1000

DATAWORD 300

And
Move #300,1000

Explain the difference.

Solution:
The assembler directives ORIGIN and DATAWORD cause the object program memory image
constructed by the assembler to indicate that 300 is to be placed at memory word location 1000
at the time the program is loaded into memory prior to execution.
The Move instruction places 300 into memory word location 1000 when the instruction is
executed as part of a program.

Problem 6:
Register R5 is used in a program to point to the top of a stack. Write a sequence of instructions using
the Index, Autoincrement, and Autodecrement addressing modes to perform each of the following
tasks:
(@) Pop the top two items off the stack, and them, and then push the result onto the stack.
(b) Copy the fifth item from the top into register R3.
(c) Remove the top ten items from the stack.
Solution:
(a) Move (R5)+,R0
Add (R5)+,R0
Move RO,-(R5)
(b) Move 16(R5),R3
(©) Add #40,R5

Problem 7:
Consider the following possibilities for saving the return address of a subroutine:
(a) In the processor register.
(b) In a memory-location associated with the call, so that a different location is used when the
subroutine is called from different places
(c) On a stack.
Which of these possibilities supports subroutine nesting and which supports subroutine recursion(that
is, a subroutine that calls itself)?
Solution:
(@) Neither nesting nor recursion is supported.
(b) Nesting is supported, because different Call instructions will save the return address at
different memory-locations. Recursion is not supported.
(c) Both nesting and recursion are supported.

1-32

