
COMPUTER ORGANIZATION

5-1

MODULE 5: BASIC PROCESSING UNIT

SOME FUNDAMENTAL CONCEPTS
• To execute an instruction, processor has to perform following 3 steps:

1) Fetch contents of memory-location pointed to by PC. Content of this location is an instruction
to be executed. The instructions are loaded into IR, Symbolically, this operation is written as:

IR [[PC]]
2) Increment PC by 4.

PC [PC] +4
3) Carry out the actions specified by instruction (in the IR).

• The first 2 steps are referred to as Fetch Phase.
Step 3 is referred to as Execution Phase.

• The operation specified by an instruction can be carried out by performing one or more of the
following actions:

1) Read the contents of a given memory-location and load them into a register.
2) Read data from one or more registers.
3) Perform an arithmetic or logic operation and place the result into a register.
4) Store data from a register into a given memory-location.

• The hardware-components needed to perform these actions are shown in Figure 5.1.

COMPUTER ORGANIZATION

5-33

SINGLE BUS ORGANIZATION
• ALU and all the registers are interconnected via a Single Common Bus (Figure 7.1).
• Data & address lines of the external memory-bus is connected to the internal processor-bus via MDR
& MAR respectively. (MDR Memory Data Register, MAR  Memory Address Register).
• MDR has 2 inputs and 2 outputs. Data may be loaded

→ into MDR either from memory-bus (external) or
→ from processor-bus (internal).

• MAR‟s input is connected to internal-bus;
MAR‟s output is connected to external-
bus.

• Instruction Decoder & Control Unit is responsible for
→ issuing the control-signals to all the units inside the processor.
→ implementing the actions specified by the instruction (loaded in the IR).

• Register R0 through R(n-1) are the Processor Registers.
The programmer can access these registers for general-purpose use.

• Only processor can access 3 registers Y, Z & Temp for temporary storage during program-execution.
The programmer cannot access these 3 registers.

• In ALU, 1) „A‟ input gets the operand from the output of the multiplexer (MUX).
2) „B‟ input gets the operand directly from the processor-bus.

• There are 2 options provided for „A‟ input of the ALU.
• MUX is used to select one of the 2 inputs.
• MUX selects either

→ output of Y or
→ constant-value 4(which is used to increment PC content).

• An instruction is executed by performing one or more of the following operations:
1) Transfer a word of data from one register to another or to the ALU.
2) Perform arithmetic or a logic operation and store the result in a register.
3) Fetch the contents of a given memory-location and load them into a register.
4) Store a word of data from a register into a given memory-location.

• Disadvantage: Only one data-word can be transferred over the bus in a clock cycle.
Solution: Provide multiple internal-paths. Multiple paths allow several data-transfers to take place in

parallel.

COMPUTER ORGANIZATION

5-33

REGISTER TRANSFERS
• Instruction execution involves a sequence of steps in which data are transferred from one register to
another.
• For each register, two control-signals are used: Riin & Riout. These are called Gating Signals.
• Riin=1  data on bus is loaded into Ri. Riout=1

 content of Ri is placed on bus.
Riout=0,  bus can be used for transferring data from other registers.

• For example, Move R1, R2; This transfers the contents of register R1 to register R2. This can be
accomplished as follows:

1) Enable the output of registers R1 by setting R1out to 1 (Figure 7.2).
This places the contents of R1 on processor-bus.

2) Enable the input of register R2 by setting R2out to 1.
This loads data from processor-bus into register R4.

• All operations and data transfers within the processor take place within time-periods defined by the
processor-clock.
• The control-signals that govern a particular transfer are asserted at the start of the clock cycle.

Input & Output Gating for one Register Bit
• A 2-input multiplexer is used to select the data applied to the input of an edge-triggered D flip-flop.
• Riin=1  mux selects data on bus. This data will be loaded into flip-flop at rising-edge of clock.

Riin=0  mux feeds back the value currently stored in flip-flop (Figure 7.3).
• Q output of flip-flop is connected to bus via a tri-state gate.

Riout=0  gate's output is in the high-impedance state.
Riout=1  the gate drives the bus to 0 or 1, depending on the value of Q.

COMPUTER ORGANIZATION

5-33

COMPUTER ORGANIZATION

5-33

PERFORMING AN ARITHMETIC OR LOGIC OPERATION
• The ALU performs arithmetic operations on the 2 operands applied to its A and B inputs.
• One of the operands is output of MUX;

And, the other operand is obtained directly from processor-bus.
• The result (produced by the ALU) is stored temporarily in register Z.
• The sequence of operations for [R3][R1]+[R2] is as follows:

1) R1out, Yin

2) R2out, SelectY, Add, Zin

3) Zout, R3in

• Instruction execution proceeds as follows:
Step 1 --> Contents from register R1 are loaded into register Y.
Step2 --> Contents from Y and from register R2 are applied to the A and B inputs of ALU;

Addition is performed &
Result is stored in the Z register.

Step 3 --> The contents of Z register is stored in the R3 register.
• The signals are activated for the duration of the clock cycle corresponding to that step. All other
signals are inactive.

CONTROL-SIGNALS OF MDR
• The MDR register has 4 control-signals (Figure 7.4):

1) MDRin & MDRout control the connection to the internal processor data bus &
2) MDRinE & MDRoutE control the connection to the memory Data bus.

• MAR register has 2 control-signals.
1) MARin controls the connection to the internal processor address bus &
2) MARout controls the connection to the memory address bus.

COMPUTER ORGANIZATION

5-33

FETCHING A WORD FROM MEMORY
• To fetch instruction/data from memory, processor transfers required address to MAR.

At the same time, processor issues Read signal on control-lines of memory-bus.
• When requested-data are received from memory, they are stored in MDR. From MDR, they are
transferred to other registers.
• The response time of each memory access varies (based on cache miss, memory-mapped I/O). To
accommodate this, MFC is used. (MFC  Memory Function Completed).
• MFC is a signal sent from addressed-device to the processor. MFC informs the processor that the
requested operation has been completed by addressed-device.
• Consider the instruction Move (R1),R2. The sequence of steps is (Figure 7.5):

1) R1out, MARin, Read ;desired address is loaded into MAR & Read command is issued.
2) MDRinE, WMFC ;load MDR from memory-bus & Wait for MFC response from memory.
3) MDRout, R2in ;load R2 from MDR.

where WMFC=control-signal that causes processor's control.
circuitry to wait for arrival of MFC signal.

Storing a Word in Memory
• Consider the instruction Move R2,(R1). This requires the following sequence:

1) R1out, MARin ;desired address is loaded into MAR.
2) R2out, MDRin, Write ;data to be written are loaded into MDR & Write command is issued.
3) MDRoutE, WMFC ;load data into memory-location pointed by R1 from MDR.

COMPUTER ORGANIZATION

5-33

EXECUTION OF A COMPLETE INSTRUCTION
• Consider the instruction Add (R3),R1 which adds the contents of a memory-location pointed by R3 to
register R1. Executing this instruction requires the following actions:

1) Fetch the instruction.
2) Fetch the first operand.
3) Perform the addition &
4) Load the result into R1.

• Instruction execution proceeds as follows:
Step1--> The instruction-fetch operation is initiated by

→ loading contents of PC into MAR &
→ sending a Read request to memory.

The Select signal is set to Select4, which causes the Mux to select constant 4. This value
is added to operand at input B (PC‟s content), and the result is stored in Z.

Step2--> Updated value in Z is moved to PC. This completes the PC increment operation and
PC will now point to next instruction.

Step3--> Fetched instruction is moved into MDR and then to IR.
The step 1 through 3 constitutes the Fetch Phase.
At the beginning of step 4, the instruction decoder interprets the contents of the IR. This
enables the control circuitry to activate the control-signals for steps 4 through 7.
The step 4 through 7 constitutes the Execution Phase.

Step4--> Contents of R3 are loaded into MAR & a memory read signal is issued.
Step5--> Contents of R1 are transferred to Y to prepare for addition.
Step6--> When Read operation is completed, memory-operand is available in MDR, and the

addition is performed.
Step7--> Sum is stored in Z, then transferred to R1.The End signal causes a new instruction

fetch cycle to begin by returning to step1.

COMPUTER ORGANIZATION

5-33

BRANCHING INSTRUCTIONS
• Control sequence for an unconditional branch instruction is as follows:

• Instruction execution proceeds as follows:
Step 1-3--> The processing starts & the fetch phase ends in step3.

Step 4--> The offset-value is extracted from IR by instruction-decoding circuit.
Since the updated value of PC is already available in register Y, the offset X is gated onto
the bus, and an addition operation is performed.

Step 5--> the result, which is the branch-address, is loaded into the PC.
• The branch instruction loads the branch target address in PC so that PC will fetch the next instruction
from the branch target address.
• The branch target address is usually obtained by adding the offset in the contents of PC.
• The offset X is usually the difference between the branch target-address and the address
immediately following the branch instruction.
• In case of conditional branch,

we have to check the status of the condition-codes before loading a new value into the PC.
e.g.: Offset-field-of-IRout, Add, Zin, If N=0 then End

If N=0, processor returns to step 1 immediately after step 4.
If N=1, step 5 is performed to load a new value into PC.

COMPUTER ORGANIZATION

5-33

MULTIPLE BUS ORGANIZATION
• Disadvantage of Single-bus organization: Only one data-word can be transferred over the bus in
a clock cycle. This increases the steps required to complete the execution of the instruction
Solution: To reduce the number of steps, most processors provide multiple internal-paths. Multiple
paths enable several transfers to take place in parallel.
• As shown in fig 7.8, three buses can be used to connect registers and the ALU of the processor.
• All general-purpose registers are grouped into a single block called the Register File.
• Register-file has 3 ports:

1) Two output-ports allow the contents of 2 different registers to be simultaneously placed on
buses A & B.
2) Third input-port allows data on bus C to be loaded into a third register during the same
clock-cycle.

• Buses A and B are used to transfer source-operands to A & B inputs of ALU.
• The result is transferred to destination over bus C.
• Incrementer Unit is used to increment PC by 4.

• Instruction execution proceeds as follows:
Step 1--> Contents of PC are

→ passed through ALU using R=B control-signal &
→ loaded into MAR to start memory Read operation. At the same time, PC is incremented by 4.

Step2--> Processor waits for MFC signal from memory.
Step3--> Processor loads requested-data into MDR, and then transfers them to IR.
Step4--> The instruction is decoded and add operation takes place in a single step.

COMPUTER ORGANIZATION

5-33

COMPLETE PROCESSOR
• This has separate processing-units to deal with integer data and floating-point data.

Integer Unit  To process integer data. (Figure 7.14).
Floating Unit  To process floating –point data.

• Data-Cache is inserted between these processing-units & main-memory.
The integer and floating unit gets data from data cache.

• Instruction-Unit fetches instructions
→ from an instruction-cache or
→ from main-memory when desired instructions are not already in cache.

• Processor is connected to system-bus &
hence to the rest of the computer by means of a Bus Interface.

• Using separate caches for instructions & data is common practice in many processors today.
• A processor may include several units of each type to increase the potential for concurrent
operations.
• The 80486 processor has 8-kbytes single cache for both instruction and data.

Whereas the Pentium processor has two separate 8 kbytes caches for instruction and data.

Note:
To execute instructions, the processor must have some means of generating the control-signals. There
are two approaches for this purpose:

1) Hardwired control and 2) Microprogrammed control.

COMPUTER ORGANIZATION

5-33

HARDWIRED CONTROL
• Hardwired control is a method of control unit design (Figure 7.11).
• The control-signals are generated by using logic circuits such as gates, flip-flops, decoders etc.
• Decoder/Encoder Block is a combinational-circuit that generates required control-outputs
depending on state of all its inputs.
• Instruction Decoder

 It decodes the instruction loaded in the IR.
 If IR is an 8 bit register, then instruction decoder generates 28(256 lines); one for each
instruction.
 It consists of a separate output-lines INS1 through INSm for each machine instruction.
 According to code in the IR, one of the output-lines INS1 through INSm is set to 1, and all
other lines are set to 0.

• Step-Decoder provides a separate signal line for each step in the control sequence.
• Encoder

 It gets the input from instruction decoder, step decoder, external inputs and condition codes.
 It uses all these inputs to generate individual control-signals: Yin, PCout, Add, End and so on.
 For example (Figure 7.12), Zin=T1+T6.ADD+T4.BR

;This signal is asserted during time-slot T1 for all instructions.
during T6 for an Add instruction.
during T4 for unconditional branch instruction

• When RUN=1, counter is incremented by 1 at the end of every clock cycle.
When RUN=0, counter stops counting.

• After execution of each instruction, end signal is generated. End signal resets step counter.
• Sequence of operations carried out by this machine is determined by wiring of logic circuits, hence
the name “hardwired”.
• Advantage: Can operate at high speed.
• Disadvantages:

1) Since no. of instructions/control-lines is often in hundreds, the complexity of control unit is
very high.
2) It is costly and difficult to design.
3) The control unit is inflexible because it is difficult to change the design.

COMPUTER ORGANIZATION

5-33

HARDWIRED CONTROL VS MICROPROGRAMMED CONTROL
Attribute Hardwired Control Microprogrammed Control
Definition Hardwired control is a control

mechanism to generate control-
signals by using gates, flip-
flops, decoders, and other
digital circuits.

Micro programmed control is a control
mechanism to generate control-signals
by using a memory called control store
(CS), which contains the control-
signals.

Speed Fast Slow
Control functions Implemented in hardware. Implemented in software.
Flexibility Not flexible to accommodate

new system specifications or
new instructions.

More flexible, to accommodate new
system specification or new instructions
redesign is required.

Ability to handle large
or complex instruction
sets

Difficult. Easier.

Ability to support
operating systems &
diagnostic features

Very difficult. Easy.

Design process Complicated. Orderly and systematic.
Applications Mostly RISC microprocessors. Mainframes, some microprocessors.
Instructionset size Usually under 100 instructions. Usually over 100 instructions.
ROM size - 2K to 10K

microinstructions.
by 20-400 bit

Chip area efficiency Uses least area. Uses more area.
Diagram

COMPUTER ORGANIZATION

5-33

MICROPROGRAMMED CONTROL
• Microprogramming is a method of control unit design (Figure 7.16).
• Control-signals are generated by a program similar to machine language programs.
• Control Word(CW) is a word whose individual bits represent various control-signals (like Add, PCin).
• Each of the control-steps in control sequence of an instruction defines a unique combination of 1s &
0s in CW.
• Individual control-words in microroutine are referred to as microinstructions (Figure 7.15).
• A sequence of CWs corresponding to control-sequence of a machine instruction constitutes the
microroutine.
• The microroutines for all instructions in the instruction-set of a computer are stored in a special
memory called the Control Store (CS).
• Control-unit generates control-signals for any instruction by sequentially reading CWs of
corresponding microroutine from CS.
• µPC is used to read CWs sequentially from CS. (µPC Microprogram Counter).
• Every time new instruction is loaded into IR, o/p of Starting Address Generator is loaded into µPC.
• Then, µPC is automatically incremented by clock;

causing successive microinstructions to be read from CS.
Hence, control-signals are delivered to various parts of processor in correct sequence.

Advantages
• It simplifies the design of control unit. Thus it is both, cheaper and less error prone implement.
• Control functions are implemented in software rather than hardware.
• The design process is orderly and systematic.
• More flexible, can be changed to accommodate new system specifications or to correct the design
errors quickly and cheaply.
• Complex function such as floating point arithmetic can be realized efficiently.
Disadvantages
• A microprogrammed control unit is somewhat slower than the hardwired control unit, because time is
required to access the microinstructions from CM.
• The flexibility is achieved at some extra hardware cost due to the control memory and its access
circuitry.

COMPUTER ORGANIZATION

5-33

ORGANIZATION OF MICROPROGRAMMED CONTROL UNIT TO SUPPORT CONDITIONAL
BRANCHING
• Drawback of previous Microprogram control:

 It cannot handle the situation when the control unit is required to check the status of the
condition codes or external inputs to choose between alternative courses of action.

Solution:
 Use conditional branch microinstruction.

• In case of conditional branching, microinstructions specify which of the external inputs, condition-
codes should be checked as a condition for branching to take place.
• Starting and Branch Address Generator Block loads a new address into µPC when a
microinstruction instructs it to do so (Figure 7.18).
• To allow implementation of a conditional branch, inputs to this block consist of

→ external inputs and condition-codes &
→ contents of IR.

• µPC is incremented every time a new microinstruction is fetched from microprogram memory except
in following situations:

1) When a new instruction is loaded into IR, µPC is loaded with starting-address of microroutine
for that instruction.
2) When a Branch microinstruction is encountered and branch condition is satisfied, µPC is
loaded with branch-address.
3) When an End microinstruction is encountered, µPC is loaded with address of first CW in
microroutine for instruction fetch cycle.

COMPUTER ORGANIZATION

5-33

MICROINSTRUCTIONS
• A simple way to structure microinstructions is to assign one bit position to each control-signal
required in the CPU.
• There are 42 signals and hence each microinstruction will have 42 bits.
• Drawbacks of microprogrammed control:

1) Assigning individual bits to each control-signal results in long microinstructions because
the number of required signals is usually large.

2) Available bit-space is poorly used because
only a few bits are set to 1 in any given microinstruction.

• Solution: Signals can be grouped because
1) Most signals are not needed simultaneously.
2) Many signals are mutually exclusive. E.g. only 1 function of ALU can be activated at a time.

For ex: Gating signals: IN and OUT signals (Figure 7.19).
Control-signals: Read, Write.
ALU signals: Add, Sub, Mul, Div, Mod.

• Grouping control-signals into fields requires a little more hardware because
decoding-circuits must be used to decode bit patterns of each field into individual control-signals.

• Advantage: This method results in a smaller control-store (only 20 bits are needed to store the
patterns for the 42 signals).

COMPUTER ORGANIZATION

5-33

TECHNIQUES OF GROUPING OF CONTROL-SIGNALS
• The grouping of control-signal can be done either by using

1) Vertical organization &
2) Horizontal organisation.

Vertical Organization Horizontal Organization
Highly encoded schemes that use compact The minimally encoded scheme in which many
codes to specify only a small number of control resources can be controlled with a single
functions in each microinstruction are referred microinstuction is called a horizontal
to as a vertical organization. organization.
Slower operating-speeds. Useful when higher operating-speed is desired.
Short formats. Long formats.
Limited ability to express parallel
microoperations.

Ability to express a high degree of parallelism.

Considerable encoding of the control
information.

Little encoding of the control information.

MICROPROGRAM SEQUENCING
• The task of microprogram sequencing is done by microprogram sequencer.
• Two important factors must be considered while designing the microprogram sequencer:

1) The size of the microinstruction &
2) The address generation time.

• The size of the microinstruction should be minimum so that the size of control memory required to
store microinstructions is also less.
• This reduces the cost of control memory.
• With less address generation time, microinstruction can be executed in less time resulting better
throughout.
• During execution of a microprogram the address of the next microinstruction to be executed has 3
sources:

1) Determined by instruction register.
2) Next sequential address &
3) Branch.

• Microinstructions can be shared using microinstruction branching.
• Disadvantage of microprogrammed branching:

1) Having a separate microroutine for each machine instruction results in a large total number
of microinstructions and a large control-store.
2) Execution time is longer because it takes more time to carry out the required branches.

• Consider the instruction Add src,Rdst ;which adds the source-operand to the contents of Rdst and
places the sum in Rdst.
• Let source-operand can be specified in following addressing modes (Figure 7.20):

a) Indexed
b) Autoincrement
c) Autodecrement
d) Register indirect &
e) Register direct

• Each box in the chart corresponds to a microinstruction that controls the transfers and operations
indicated within the box.
• The microinstruction is located at the address indicated by the octal number (001,002).

COMPUTER ORGANIZATION

5-33

COMPUTER ORGANIZATION

5-33

BRANCH ADDRESS MODIFICATION USING BIT-ORING
• The branch address is determined by ORing particular bit or bits with the current address of
microinstruction.
• Eg: If the current address is 170 and branch address is 171 then the branch address can be
generated by ORing 01(bit 1), with the current address.
• Consider the point labeled in the figure. At this point, it is necessary to choose between direct and
indirect addressing modes.
• If indirect-mode is specified in the instruction, then the microinstruction in location 170 is performed
to fetch the operand from the memory.

If direct-mode is specified, this fetch must be bypassed by branching immediately to location 171.
• The most efficient way to bypass microinstruction 170 is to have bit-ORing of

→ current address 170 &
→ branch address 171.

WIDE BRANCH ADDRESSING
• The instruction-decoder (InstDec) generates the starting-address of the microroutine that
implements the instruction that has just been loaded into the IR.
• Here, register IR contains the Add instruction, for which the instruction decoder generates the
microinstruction address 101. (However, this address cannot be loaded as is into the μPC).
• The source-operand can be specified in any of several addressing-modes. The bit-ORing technique
can be used to modify the starting-address generated by the instruction-decoder to reach the
appropriate path.
Use of WMFC
• WMFC signal is issued at location 112 which causes a branch to the microinstruction in location 171.
• WMFC signal means that the microinstruction may take several clock cycles to complete. If the
branch is allowed to happen in the first clock cycle, the microinstruction at location 171 would be
fetched and executed prematurely. To avoid this problem, WMFC signal must inhibit any change in the
contents of the μPC during the waiting-period.

COMPUTER ORGANIZATION

5-33

Detailed Examination of Add (Rsrc)+,Rdst
• Consider Add (Rsrc)+,Rdst; which adds Rsrc content to Rdst content, then stores the sum in Rdst
and finally increments Rsrc by 4 (i.e. auto-increment mode).
• In bit 10 and 9, bit-patterns 11, 10, 01 and 00 denote indexed, auto-decrement, auto-increment and
register modes respectively. For each of these modes, bit 8 is used to specify the indirect version.
• The processor has 16 registers that can be used for addressing purposes; each specified using a 4-
bit-code (Figure 7.21).
• There are 2 stages of decoding:

1) The microinstruction field must be decoded to determine that an Rsrc or Rdst register is
involved.
2) The decoded output is then used to gate the contents of the Rsrc or Rdst fields in the IR into
a second decoder, which produces the gating-signals for the actual registers R0 to R15.

COMPUTER ORGANIZATION

5-33

MICROINSTRUCTIONS WITH NEXT-ADDRESS FIELDS

• Drawback of previous organization:
 The microprogram requires several branch microinstructions which perform no useful
operation. Thus, they detract from the operating-speed of the computer.

Solution:
 Include an address-field as a part of every microinstruction to indicate the location of the next
microinstruction to be fetched. (Thus, every microinstruction becomes a branch
microinstruction).

• The flexibility of this approach comes at the expense of additional bits for the address-field(Fig 7.22).
• Advantage: Separate branch microinstructions are virtually eliminated. (Figure 7.23-24).
• Disadvantage: Additional bits for the address field (around 1/6).
• There is no need for a counter to keep track of sequential address. Hence, μPC is replaced with μAR.
• The next-address bits are fed through the OR gate to the μAR, so that the address can be modified
on the basis of the data in the IR, external inputs and condition-codes.
• The decoding circuits generate the starting-address of a given microroutine on the basis of the
opcode in the IR. (μAR  Microinstruction Address Register).

COMPUTER ORGANIZATION

5-33

COMPUTER ORGANIZATION

5-33

PREFETCHING MICROINSTRUCTIONS
• Disadvantage of Microprogrammed Control: Slower operating-speed because of the time it takes
to fetch microinstructions from the control-store.

Solution: Faster operation is achieved if the next microinstruction is pre-fetched while the
current one is being executed.

Emulation
• The main function of microprogrammed control is to provide a means for simple, flexible and
relatively inexpensive execution of machine instruction.
• Its flexibility in using a machine's resources allows diverse classes of instructions to be implemented.
• Suppose we add to the instruction-repository of a given computer M1, an entirely new set of
instructions that is in fact the instruction-set of a different computer M2.
• Programs written in the machine language of M2 can be then be run on computer M1 i.e. M1
emulates M2.
• Emulation allows us to replace obsolete equipment with more up-to-date machines.
• If the replacement computer fully emulates the original one, then no software changes have to be
made to run existing programs.
• Emulation is easiest when the machines involved have similar architectures.

COMPUTER ORGANIZATION

5-33

Problem 1:
Why is the Wait-for-memory-function-completed step needed for reading from or writing to the main
memory?
Solution:

The WMFC step is needed to synchronize the operation of the processor and the main memory.

Problem 2:
For the single bus organization, write the complete control sequence for the instruction: Move (R1), R1
Solution:

Problem 3:
1)

PCout, MARin, Read, Select4, Add, Zin

2) Zout, PCin, Yin, WMFC
3) MDRout, IRin

4) R1out, MARin, Read
5) MDRinE, WMFC
6) MDRout, R2in, End

Write the sequence of control steps required for the single bus organization in each of the following
instructions:

a) Add the immediate number NUM to register R1.
b) Add the contents of memory-location NUM to register R1.
c) Add the contents of the memory-location whose address is at memory-location NUM to
register R1.

Assume that each instruction consists of two words. The first word specifies the operation andN the
addressing mode, and the second word contains the number NUM
Solution:

Problem 4:
Show the control steps for the Branch on Negative instruction for a processor with three-bus
organization of the data path
Solution:

COMPUTER ORGANIZATION

5-33

MODULE 5(CONT.): EMBEDDED SYSTEMS & LARGE
COMPUTER SYSTEMS

MICROWAVE OVEN
• Microwave-oven is one of the examples of embedded-system.
• This appliance is based on magnetron power-unit that generates the microwaves used to heat food.
• When turned-on, the magnetron generates its maximum power-output.

Lower power-levels can be obtained by turning the magnetron on & off for controlled time-intervals.
• Cooking Options include:

→ Manual selection of the power-level and cooking-time.
→ Manual selection of the sequence of different cooking-steps.
→ Automatic melting of food by specifying the weight.

• Display (or Monitor) can show following information:
→ Time-of-day clock.
→ Decrementing clock-timer while cooking.
→ Information-messages to the user.

• I/O Capabilities include:
→ Input-keys that comprise a 0 to 9 number pad.
→ Function-keys such as Start, Stop, Reset, Power-level etc.
→ Visual output in the form of a LCD.
→ Small speaker that produces the beep-tone.

• Computational Tasks executed are:
→ Maintaining the time-of-day clock.
→ Determining the actions needed for the various cooking-options.
→ Generating the control-signals needed to turn on/off devices.
→ Generating display information.

• Non-volatile ROM is used to store the program required to implement the desired actions.
So, the program will not be lost when the power is turned off (Figure 10.1).

• Most important requirement: The microcontroller must have sufficient I/O capability.
Parallel I/O Ports are used for dealing with the external I/O signals.

Basic I/O Interfaces are used to connect to the rest of the system.

COMPUTER ORGANIZATION

5-33

COMPUTER ORGANIZATION

5-33

DIGITAL CAMERA
• Digital Camera is one of the examples of embedded system.
• An array of Optical Sensors is used to capture images (Figure 10.2).
• The optical-sensors convert light into electrical charge.

• Each sensing-element generates a charge that corresponds to one pixel.
One pixel is one point of a pictorial image.

The number of pixels determines the quality of pictures that can be recorded & displayed.
• ADC is used to convert the charge which is an analog quantity into a digital representation.
• Processor

→ manages the operation of the camera.
→ processes the raw image-data obtained from the ADCs to generate images.

• The images are represented in standard-formats, so that they are suitable for use in computers.
• Two standard-formats are:

1) TIFF is used for uncompressed images &
2) JPEG is used for compressed images.

• The processed-images are stored in a larger storage-device. For ex: Flash memory cards.
• A captured & processed image can be displayed on a LCD screen of camera.
• The number of saved-images depends on the size of the storage-unit.
• Typically, USB Cable is used for transferring the images from camera to the computer.
• System Controller generates the signals needed to control the operation of

i) Focusing mechanism and
ii) Flash unit.

(ADC  Analog-to-digital converter, LCD  liquid-crystal display)
(TIFF Tagged Image File Format, JPEG Joint Photographic Experts Group)

COMPUTER ORGANIZATION

5-33

HOME TELEMETRY (DISPLAY TELEPHONE)
• Home Telemetry is one of the examples of embedded system.
• The display-telephone has an embedded processor which enables a remote access to other devices in
the home.
• Display telephone can perform following functions:

1) Communicate with a computer-controlled home security-system.
2) Set a desired temperature to be maintained by an air conditioner.
3) Set start-time, cooking-time & temperature for food in the microwave-oven.
4) Read the electricity, gas, and water meters.

• All of this is easily implementable if each of these devices is controlled by a microcontroller.
• A link (wired or wireless) has to be provided between

1) Device microcontroller &
2) Microprocessor in the telephone.

• Using signaling from a remote location to observe/control state of device is referred to as telemetry.

COMPUTER ORGANIZATION

5-33

MICROCONTROLLER CHIPS FOR EMBEDDED APPLICATIONS

• Processor Core may be a basic version of a commercially available microprocessor (Figure 10.3).
• Well-known popular microprocessor architecture must be chosen. This is because, design of new
products is facilitated by

→ numerous CAD tools
→ good examples &
→ large amount of knowledge/experience.

• Memory-Unit must be included on the microcontroller-chip.
• The memory-size must be sufficient to satisfy the memory-requirements found in small applications.
• Some memory should be of RAM type to hold the data that change during computations.

Some memory should be of Read-Only type to hold the software.
This is because an embedded system usually does not include a magnetic-disk.

• A field-programmable type of ROM storage must be provided to allow cost-effective use.
For example: EEPROM and Flash memory.

• I/O ports are provided for both parallel and serial interfaces.
• Parallel and Serial Interfaces allow easy implementation of standard I/O connections.
• Timer Circuit can be used

→ to generate control-signals at programmable time intervals &
→ for event-counting purposes.

• An embedded system may include some analog devices.
• ADC & DAC are used to convert analog signals into digital representations, and vice versa.

COMPUTER ORGANIZATION

5-33

PARALLEL I/O INTERFACE

• Each parallel port has an associated 8-bit DDR (Data Direction Register) (Figure 10.4).
• DDR can be used to configure individual data lines as either input or output.

• If the data direction flip-flop contains a 0, then Port pin PAi is treated as an input (Figure 10.5).
If the data direction flip-flop contains a 1, then Port pin PAi is treated as an output.

• Activation of control-signal Read_Port, places the logic value on the port-pin onto the data line Di.
Activation of control-signal Write_Port, places value loaded into output data flip-flop onto port-pin.

• Addressable Registers are (Figure 10.6):
1) Input registers (PAIN for port A, PBIN for port B)
2) Output registers (PAOUT for port A, PBOUT for port B)
3) Direction registers (PADIR for port A, PBDIR for port B)
4) Status-register (PSTAT) &
5) Control register (PCONT).

COMPUTER ORGANIZATION

5-33

• Status Register provides information about the current status of
1) Input registers &
2) Output registers.

• PASIN =1  When there are new data on port A (Figure 10.6).
PASIN =0  When the processor accepts the data by reading the PAIN register.

• The interface uses a separate control line to indicate availability of new data to the connected-device.
• PASOUT = 1  When the data in register PAOUT are accepted by the connected-device.

PASOUT = 0  When the processor writes data into PAOUT.
• Like PASIN & PAOUT, the flags PBSIN and PBSOUT perform the same function on port B.
• The status register also contains four interrupt flags. They are IAIN, IAOUT, IBIN & IBOUT.
• IAIN = 1  When interrupt is enabled and the corresponding I/O action occurs.
• The interrupt-enable bits are held in control register PCONT.
• ENAIN= 1  when the corresponding interrupt is enabled.
• For ex: If ENAIN=1 & PASIN=1, then interrupt flag IAIN is set to 1 and an interrupt request is raised.

Thus,
IAIN = ENAIN * PASIN

• Control Registers is used for controlling data transfers to/from the devices connected to ports A/B.
• Port A has two control lines: CAIN and CAOUT.
• CAIN and CAOUT are be used to provide an automatic signaling mechanism b/w

i) Interface and
ii) Attached device.

• PAREG and PBREG are used to select the mode of operation of inputs to ports A and B respectively.
• If PAREG =1;

Then, a register is used to store the input data.
Otherwise, a direct path from the pins is used.

COMPUTER ORGANIZATION

5-33

SERIAL I/O INTERFACE
• The serial interface provides the UART capability to transfer data (Figure 10.7).

(UART  Universal Asynchronous Receiver/Transmitter).
• Double buffering is

→ used in both the transmit- and receive-paths.
→ needed to handle bursts in I/O transfers correctly.

• Addressable Registers are (Figure 10.8):
1) Receive-buffer
2) Transmit-buffer
3) Status-register (SSTAT)
4) Control register (SCONT) &
5) Clock-divisor register (DIV).

COMPUTER ORGANIZATION

5-33

• Input data are read from the Receive-buffer.
Output data are loaded into the Transmit-buffer.

• Status Register (SSTAT) provides information about the current status of
i) Receive-units and
ii) Transmit-units.

• Bit SSTAT0 = 1  When there are new data in the receive-buffer.
Bit SSTAT0 = 0  When the processor accepts the data by reading the receive-buffer.

• SSTAT1 = 1  When the data in transmit-buffer are accepted by the connected-device.
SSTAT1 = 0  When the processor writes data into transmit-buffer.

(SSTAT0 & SSTAT1 similar to SIN & SOUT)
• SSTAT2 = 1  if an error occurs during the receive process.
• The status-register also contains the interrupt flags.
• SSTAT4 =1  When the receive-buffer becomes full and the receiver-interrupt is enabled.

SSTAT5 = 1  When the transmit-buffer becomes empty & the transmitter-interrupt is enabled.
• Control Register (SCONT) is used to hold the interrupt-enable bits.
• If SCONT6−4 = 1.

Then the corresponding interrupts are enabled.
Otherwise, the corresponding interrupts are disabled.

• Control register also indicates how the transmit clock is generated
• If SCONT0 = 0.

Then, the transmit clock is the same as the system (processor) clock.
Otherwise, a lower frequency transmit clock is obtained using a clock-dividing circuit.

• Clock-divisor register (DIV) divides system-clock signal to generate the serial transmission clock.
• The counter generates a clock signal whose frequency is equal to

= Frequency of system clock
Contents of DIV register

COMPUTER ORGANIZATION

5-33

COUNTER/TIMER
• A 32-bit down-counter-circuit is provided for use as either a counter or a timer.
• Basic operation of the circuit involves

→ loading a starting value into the counter and
→ then decrementing the counter-contents using either

i) Internal system clock or
ii) External clock signal.

• The circuit can be programmed to raise an interrupt when the counter-contents reach 0.

• Counter/Timer Register (CNTM) can be loaded with an initial value (Figure 10.9).
• The initial value is then transferred into the counter-circuit.
• The current contents of the counter can be read by accessing memory-address FFFFFFD4.
• Control Register (CTCON) is used to specify the operating mode of the counter/timer circuit.
• The control register provides a mechanism for

→ starting & stopping the counting-process &
→ enabling interrupts when the counter-contents are decremented to 0.

• Status Register (CTSTAT) reflects the state of the circuit.
• There are 2 modes: 1) Counter mode 2) Timer mode.

Counter Mode
• CTCON7 = 0  When the counter mode is selected.
• The starting value is loaded into the counter by writing it into register CNTM.
• The counting-process begins when bit CTCON0 is set to 1 by a program.
• Once counting starts, bit CTCON0 is automatically cleared to 0.
• The counter is decremented by pulses on the Counter.
• Upon reaching 0, the counter-circuit

→ sets the status flag CTSTAT0 to 1 &
→ raises an interrupt if the corresponding interrupt-enable bit has been set to 1.

• The next clock pulse causes the counter to reload the starting value.
• The starting value is held in register CNTM, and counting continues.
• The counting-process is stopped by setting bit CTCON1 to 1.

Timer Mode
• CTCON7 = 1  When the timer mode is selected.
• This mode can be used to generate periodic interrupts.
• It is also suitable for generating a square-wave signal.
• The process starts as explained above for the counter mode.
• As the counter counts down, the value on the output line is held constant.
• Upon reaching 0, the counter is reloaded automatically with the starting value, and the
output signal on the line is inverted.
• Thus, the period of the output signal is twice the starting counter value multiplied by
the period of the controlling clock pulse.
• In the timer mode, the counter is decremented by the system clock.

COMPUTER ORGANIZATION

5-33

MODULE 5(CONT.): THE STRUCTURE OF GENERAL-
PURPOSE MULTIPROCESSORS

THE STRUCTURE OF GENERAL-PURPOSE MULTIPROCESSORS
1. UMA (Uniform Memory Access) Multiprocessor

• An interconnection-network permits n processors to access k memories (Figure 12.2).
Thus, any of the processors can access any of the memories.

• The interconnection-network may introduce network-delay between
1) Processor &
2) Memory.

• A system which has the same network-latency for all accesses from the processors to the
memory-modules is called a UMA Multiprocessor.
• Although the latency is uniform, it may be large for a network that connects

→ many processors &
→ many memory-modules.

• For better performance, it is desirable to place a memory-module close to each processor.
• Disadvantage:

 Interconnection-networks with very short delays are costly and complex to implement.

2. NUMA (Non-Uniform Memory Access) Multiprocessors
• Memory-modules are attached directly to the processors (Figure 12.3).
• The network-latency is avoided when a processor makes a request to access its local memory.
• However, a request to access a remote-memory-module must pass through the network.
• Because of the difference in latencies for accessing local and remote portions of the shared
memory, systems of this type are called NUMA multiprocessors.
• Advantage:

 A high computation rate is achieved in all processors
• Disadvantage:

 The remote accesses take considerably longer than accesses to the local memory.

COMPUTER ORGANIZATION

5-33

3. Distributed Memory Systems
• All memory-modules serve as private memories for processors that are directly connected to
them.
• A processor cannot access a remote-memory without the cooperation of the remote-
processor.
• This cooperation takes place in the form of messages exchanged by the processors.
• Such systems are often called Distributed-Memory Systems (Figure 12.4).

