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Module-I : (15 Hours) Discrete - Time Control Systems :

Introduction: Discrete Time Control Systems and Continuous Time Control Systems, Sampling
Process.

Digital Control Systems: Sample and Hold, Analog to digital conversion, Digital to analog conversion.
The Z-transform: Discrete-Time Signals, The Z-transform, Z-transform of Elementary functions,
Important properties and Theorms of the Z-transform. The inverse Ztransform, Z-Transform method
for solving Difference Equations.

Z-Plane Analysis of Discrete Time Control Systems: Impulse sampling & Data Hold, Reconstruction
of Original signals from sampled signals: Sampling theorm, folding, aliasing. Pulse Transfer function:
Starred Laplace Transform of the signal involving Both ordinary and starred Laplace Transforms;
General procedures for obtaining pulse Transfer functions, Pulse Transfer function of open loop and
closed loop systems.

Mapping between the s-plane and the z-plane, Stability analysis of closed loop systems in the z-
plane: Stability analysis by use of the Bilinear Transformation and Routh stability critgion, Jury
stability. Test. Book No. 1: 1.1; 1.2; 1.4;2.1; 2.2; 2.3; 2.4; 2.5, 2.6; 3.2; 3.4; 3.5; 4.2; 4.3.
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Introduction: Concepts of State, State Variables and State Model (of continuous time systems):
State Model of Linear Systems, State Model for Single-Input-Single-Output Linear Systems,
Linearization of the State Equation. State Models for Linear Continuous — Time Systems: State-
Space Representation Using Physical Variables, State — space Representation Using Phase Variables,
Phase variable formulations for transfer function with poles and zeros, State — space Representation
using Canonical Variables, Derivation of Transfer Function for State Model. Diagonalization:
Eigenvalues and Eigenvectors, Generalized Eigenvectors.

Solution of State Equations: Properties of the State Transition Matrix, Computation of State
Transition Matrix, Computation by Techniques Based on the Cayley-Hamilton Theorem, Sylvester’s
Expansion theorm. Concepts of Controllability and Observability: Controllability, Observability,
Effect of Pole-zero Cancellation in Transfer Function. Pole Placement by State Feedback, Observer
Systems. State Variables and Linear Discrete — Time Systems: State Models from Linear Difference
Equations/z-transfer Functions, Solution of State Equations (Discrete Case), An Efficient Method of
Discretization and Solution, Linear Transformation of State Vector (Discrete-Time Case), Derivation
of z-Transfer Function from Discrete-Time State Model. = Book No. 2: 12.1 to 12.9.

Module -1ll : (12 Hours) Nonlinear Systems :

Introduction : Behaviour of Non linear Systems, Investigation of nonlinear systems.

Common Physical Non Linearities: Saturation, Friction, Backlash, Relay, Multivariable Nonlinearity.
The Phase Plane Method: Basic Concepts, Singular Points: Nodal Point, Saddle Point, Focus Point,
Centre or Vortex Point, Stability of Non Linear Systems: Limit Cycles, Construction of Phase
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Trajectories: Construction by Analytical Method, Construction by Graphical Methods. The
Describing Function Method: Basic Concepts: Derivation of Describing Functions: Dead-zone and
Saturation, Relay with Dead-zone and Hysteresis, Backlash. Stability Analysis by Describing Function
Method: Relay with Dead Zone, Relay with Hysteresis, Stability Analysis by Gain-phase Plots. Jump
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Methods of constructing Liapunov functions for Non linear Systems.
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Module 1: Discrete-Time Control systems

Lecture Note 1 (Introduction)

Continuous time Control System:

In continuous time control systems, all the system variables are continuous signals. Whether
the system is linear or nonlinear, all variables are continuously present and therefore known
(available) at all times. A typical continuous time control system is shown in Figure below.

(Closed loop continuous-time control system)

Command input VR Error Control Output
»! ) »| Controller »| Plant > u(t)
r(t) + N S elt) input u(t)
Sensor |

Discrete time Control System:

Discrete time control systems are control systems in which one or more variables can change
only at discrete instants of time. These instants, which may be denoted by kT(k=0,1,2,...)
specify the times at which some physical measurement is performed or the times at which

the memory of a digital computer is read out.

Command input ™ Error Computer . u(t) Output
E— Yl A/D »| (control » D/A “»| Plant -
r(t) + \__J_/ e(t) algorithm) y(1)
Sensor
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(Block diagram of a discrete-time control system)

Continuous time control systems whose signals are continuous in time are described by
differential equation, whereas discrete control systems that involve sampled data signals or
digital signals and possibly continuous time signals as well are described by difference

equation.
Sampling Process:

Sampling is a process by which a continuous time signal is converted into a sequence of
numbers at discrete time intervals. A sampling process is used whenever a control system
involves a digital computer. Also a sampling process occurs whenever measurements
necessary for control are obtained in an intermittent fashion. The sampling process is usually
followed by a quantization process in which the sampled analog amplitude is replaced by a
digital amplitude (represented by a binary number).Then the digital signal is processed by the
computer and the output is sampled and fed to a hold circuit. The output of the hold circuit is

a continuous time signal and is fed to the actuator for the control of the plant.

x(t)

(Continuous-time analog signal)
(a)

Y ot
me
(Continuous-time quantized signal)
(b)
0 Tt
x{t) A
L {c) e —
1 l I i o
i
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(Sampled-data signal)

L ecture Note 2 (Digital Control Systems)

Sample and Hold Circuits:

A sampler in a digital system converts an analog signal into a train of amplitude-modulated
pulses. The hold circuit holds the value of the sampled pulse signal over a specified period of
time. The sample and hold is necessary in the A/D converter to produce a number that

accurately represents the input signal at the sampling instant.

The sample and hold circuit is an analog circuit in which an input voltage is acquired and
then stored on a high quality capacitor as shown in figure below. Op-Amp 1 is an input
buffer amplifier with a high input impedance and Op-Amp 2 is the output amplifier that

buffers the voltage on the hold capacitor.

The two modes of operation for a sample and hold circuit are tracking mode & hold mode.
When the switch is closed the operating mode is the tracking mode in which the charge on

the capacitor in the circuit tracks the input voltage. When the switch is open the operating

1 0
I
L . L
Amp. 1 : Amp. 2
i
Analog 1 c Analog
input ! output
1
I
I
|
= v —()
[
- L

Sample-and-hold
command
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mode is the hold mode in which the capacitor voltage holds constant for a specified time

period.

(sample and hold circuit)

Digital to Analog Conversion:

Digital-to-analog conversion is simple and effectively instantaneous. Properly weighted
voltages are summed together to yield the analog output. For example, in Figure below, three
weighted voltages are summed. The three-bit binary code is represented by the switches.
Thus, if the binary number is 110,, the center and bottom switches are on, and the analog
output is 6 volts. In actual use, the switches are electronic and are set by the input binary

code.

Analog
+ output

Least significant bit —O/( O— 1 P
+

o

Most significant bit {)/ O— 4

1 volt

(Digital to Analog converter)
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Analog to Digital Conversion:

The process by which a sampled analog signal is quantized and converted to a binary number
is called analog to digital conversion. The A/D converter performs the operation of sample-

and —hold, quantizing and encoding.

The simplest type of A/D converter is the counter type. The basic principle on which it works
is the clock pulses are applied to the digital counter in such a way that the output voltage of
the D/A converter (that is part of the feedback loop in the A/D converter) is stepped up one

least significant bit at a time, and the output voltage is compared with the analog input

- EOC
Clock E— SAR -
il
|r.:|!-1_| .Ir.:'l\.\'_'\- |r]-\. !'Il |r]|
L L B |
Ve DAC
Comparator
‘ +
Vi S/H

voltage once for each pulse. When the output voltage has reached the magnitude of the input

voltage, the clock pulses are stopped. The counter output voltage is then the digital output.

(Counter type analog to digital converter)
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L ecture Note 3(The Z-Transform)

Z-transform:

Z-transform is a mathematical tool commonly used for the analysis and synthesis of discrete
time control systems. The role of Z-transform in discrete time systems is similar to that of the

Laplace transform in continuous systems. In considering Z-transform of a time function X(t),

we consider only the sampled values of x(t), i.e.,x(0), x(T), x(2T)....... where T is the
sampling period.

ox
XD = ZIe@ = Ze BT = D, 2 GT)=F

k=n

For a sequence of numbers X(K)

or
2@ = ZheCell = ) xGre™*
k=n
The above transforms are referred to as one sided z-transform. In one sided z-ransform, we
assume that X(t) = 0 for t < 0 or x(k) = 0 for k < 0. In two sided z-transform, we assume that
-1 <t<1ork=%1,£2,43, ........

o
XY= 2B = Z 2Tz *

=

The one sided z-transform has a convenient closed form solution in its region of convergence
for most engineering applications. Whenever X(z), an infinite series in z”', converges outside
the circle |z| = R, where R is the radius of absolute convergence it is not needed each time to

specify the values of z over which X(z) is convergent.

l.e. for |z]| > R =convergent and for |z| < R = divergent.
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Z-Transforms of some elementary functions:

(i) Unit step function is defined as:

1,8 (b = 00, fort <« (1, fortz=m

Unit step sequence is defined as

s kT =g, fork « M1, fork =012,

Assuming that the function is continuous from right, the Z-transform is:

W W

)= UAETIz=N = ==H e T SN QR =
if;.(-l-;:qth.(ﬂ")- -;‘ﬂ- R s B

The above series converges if |z| > 1.

(i) Unit ramp function is defined as:

T (F) - (0. fﬂ’?’ t < 0}1‘(?4 f{:’}"‘ )
Again Ur(iT) m KT, kwm LT

The Z-transform is:
w w

L S Iz
Up (@) = zuw.nm“:'- K- ;_:‘IHT- ]
The above series converges if [z| > 1.
(iii) Exponential function is defined as:
xty = 0, fort = o'{e'(—at), fortzo
Again w(kT)m g=®hT, kwmQl3 .

The Z-transform is:
W

a -
_'{(-'::' - Z :3'.'(}6?:':-'1{ - Z E'-E'I{F:-'I{ - (:__-.EI-QTT

E=p k=
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Lecture Note 4(Theorems & properties of Z-

Transform)

Table for z- and s-transform:

Ao Fi(s) F(z)
1. u(t) 1 _Z
5 z—1
2, t 1 Tz
st (z-1)
! a"
3 " n. 5 1y e Z
5+l 4111—%{ 1 dan [z - E'“T]
4, e 1 _*
s+a z—el
5. g™ n! ,[;u"i —*
(s+a)"" da" |z — e-aT
6. sin wt @ zsinwl
5%+t 22 —2zcoswT + 1
7. ot 5 z{z — coswT)
s+ o 7t —2zcoseT +1
8. e~"'sin wt @ ze~TsinwT
(s + a)* + e? 72 — 2ze~9Tcos wT + e~2aT
9. e ™ cos wt _ sta 22— ze™ coswT
(s +a)’ + a? 72 — 2ze~7 coswT +e-27

Important properties & theorems of z-transform:

1. Multiplication by a constant:
2. Linearity: If #(k) = afUd = fg(k)  then ¥(=i —
Zle" %(K)] = X&)

3. Multiplication by a* :

4. Real shifting: Z[x(r = nT)]=17"KQ) and

Zlax(t)] = ﬂ-;f(-’:', where £(z) = Z[x(t)]
aF@E)x FE(z)
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w
Zlx(e+ nT)] — 2" [.-‘f(:} - Z ?."Ee‘fTJ':]_k]
T

5. Complex shifting: Z[s5%%x ()] = X(zaT5E)

6. Initial value theorem:

x0) = lim XGz)
T

7. Final value theorem:
kl‘-_ﬁl: xR)= éi_g:,_g[(l — z™RXE)
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L ecture Note 5(Inverse Z-Transform)

Inverse Z-transforms:

When F(z), the Z-transform of f(kT) or f(k), is given, the operation that determines the
corresponding x(kT) or x(k) is called inverse Z-transform. It should be noted that only the
time sequence at the sampling instants is obtained from the inverse Z-transform. So the
inverse Z-transform of F(z) yield a unique f(k) but does not yield a unique f{t).

= f(KT) = 2= [F(2)]

The inverse Z- transform can be obtained by using
(i) Power series method:
Since F(z) is mostly expressed in the ratio of polynomial form
zH:"I" ﬂﬂz”-l + 1t + ﬂ”:

We can immediately recognize the sequence of f(k) if F(z) can be written in form of series

F@)=

with increasing powers of z' .This is easily done by dividing the numerator by the
denominator.
le F@)mf@+ Q™+ @™+ v FUI™ =
Here the values of f(k) for k=0,1,2,... can be determined by inspection.
(ii) Partial fraction expansion method:
To expand F(z) into partial fractions, we first factor the denominator polynomial of F(z) and
find the poles F(z):
Bo&™ & by 2t = e
S = PJE =) @ =)

We then expand F(z)/z into partial fractions so that each term is easily recognizable

F@)

in a table of Z-transforms. l.e.

Page 13



ADVANCED CONTOL SYSTEMS

F@
;= [[E — —_—
Where : k pt) 2 lz.p,

(iii) Inversion integral method:

The formula for inversion integral method is given by

ZF@)] = f(k) = %ﬁzmzﬁ-w

Where C is a circle with its center at the origin of the z plane such that all poles of %)= =

are inside it.

Z-transform method for solving Difference Equation:

One of the most important applications of Z-transform is in the solution of linear difference
equations. Let us consider that a discrete time system is described by the following difference

equation.

2= 2)= (k= 1)= 2x(R)m O, (0] ), w1y w1

Taking the Z-transform of both sides of the given difference equation, we obtain

[23X(@) — z2X(0) - zX(1)] + 3[zX(@) — zX(0)] + 2X@) =0

Substituting the initial data and after simplifying we get
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Jzlm _ - -

ziifr A2 g4+l 42

Taking the inverse Z-transform we get

xE)m (=1)F = (=20F, k3,12

L ecture Note 6(Z-plane Analysis, sampling &

hold)

Impulse Sampling:

In case of an impulse sampling, the output of the sampler is considered to be a train of
impulses that begin with t=0, with the sampling period equal to T and the strength of each
impulse equal to sampled value of the continuous-time signal at the corresponding sampling

instant as shown in figure below.

x(t) x*(t)

x(1) / x* () 3
-

Xi(s) P X"’t‘s?
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(Impulse sampler)

The sampler output is equal to the product of the continuous-time input x(t) and the train of
unit impulses Or(t).
The train of unit impulses dr(t) can be defined as

Gr@)m Z &t - kT)

W
~Eg

Now the sampler output can be expressed as

w
() - Z B k)
k=0
o

= XK@ = Y MG

k=0
In the impulse sampler the switch may be thought of closing instantaneously every sampling
period T and generating impulses x(kT)o(t-kT).The impulse sampler is a fictitious sampler

and it does not exist in the real world.
Data Hold:

Data-hold is a process of generating a continuous-time signal h(t) from a discrete-time
sequence x(kT).A hold circuit converts the sampled signal into a continuous-time signal,

which approximately reproduces the signal applied to the sampler.

The signal h(t) during the interval kT<t < (k+1)T can be expressed as

GGET + T m Gnt b @ T S v G0 T b G wharg CEirE T
Since, hxT) m x(3T')
So,

RGET | W)= @ T | @po T+ e | @qT | &GET) — (1)
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If the data-hold circuit is an nth-order polynomial extrapolator, it is called an nth order hold.

Zero-Order Hold:

It is the simplest data-hold obtained by putting n=0 in eq(1), gives KT + vrm xGT) It
indicates that the circuit holds the value of h(kT) for kT< t < (k + 1)T until the next sample
h((k + 1)T) arrives.

x(r) x(kTh hit)

L

T
o

r

k4

) l L.
kT
/ Zero-order

" hold
x(t} Sampler x(kT) hit)

(sampler and zero order hold)

The accuracy of zero order hold (ZOH) depends on the sampling frequency. When T—0, the
output of ZOH approaches the continuous time signal. Zero order hold is again a linear

device which satisfies the principle of superposition.

Qhﬂ{t}

i

T
(Impulse response of ZOH)
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The impulse response of a ZOH, as shown in the above figure can be written as

Gl =ty = ut = TY

. 1 _E'Tf'
> Cpgle)m -

L ecture Note 7(Reconstruction of signal)

Data Reconstruction:

To reconstruct the original signal from a sampled signal, there is a certain minimum

frequency that the sampling operation must satisfy. Such a minimum frequency is specified

by the sampling theorem.

Sampling Theorem:
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If the sampling frequency ®s = 2B/T ( where T is the sampling period) and ®; is the highest

P X(jw) E+\

1

R

"'(.l.]-i 0 f.d1 L

frequency component present in the continuous- time signal x(t),then it is theoretically

possible that the signal x(t) can be constructed completely from the sampled signal x*(t) if

0>2 .

Considering the frequency spectrum of the signal x(t) as shown in the figure below

Then the frequency spectra of the sampled signal can be expressed as
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W

A7) -%— Z KW+ foagh) m ---+%-X{f(w - wEJ}-h%-XffwM %—X{f(w SETH) B

K-

The above equation gives the frequency spectrum of the sampled signal x*(t) as shown in

figure below in which we can see that frequency spectrum of the impulse sampled signal is

reproduced an infinite number of times and is attenuated by the factor 1/T.

X el )
e = Juy

| s
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The above figure represents the frequency spectrum for ms>2 ®; without any overlap and the

continuous time signal x(t) can be reconstructed from the impulse-sampled signal x*(t).

For <2 m;,as shown in figure below, the original shape of |X(jo)| no longer appears in the

plot of | X*(jw)| because of the superposition of the spectra. As a result the continuous time

signal x(t) can not be reconstructed from the impulse-sampled signal x*(t).
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w, < 2w,
/\}\'—A"A‘A-A—/\
/ D "G I G M
! Fon Y foN AN 4
! ! o Doy foA Y
/ ! ! vl v | !
(] | | [ N I A I | .
_Ews 'L.';S ﬂ w; 2“5 &

Lecture Note 8(Folding & Aliasing)

Folding:

The overlapping of the high frequency components with the fundamental component in the
frequency spectrum is sometimes referred to as folding and the frequency wy/2 is often
known as folding frequency. The frequency s is called Nyquist frequency.. The figure

| X*{jwl) | & Folding

error

]
Sy

e
)
QO

(o))

(¢}
N
N
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below shows the region where folding error occurs.

Aliasing:

If the sampling rate is less than twice the input frequency, the output frequency will be
different from the input which is known as aliasing. The output frequency in that case is

called alias frequency and the period is referred to as alias period.

Figure-1 shows the frequency spectra of an impulse-sampled signal x*(t), where ©;<2 ®;.

Now the frequency spectrum at an arbitrary frequency w; in the overlap region includes
components not only at frequency ®; but also at frequency ws- ®; (in general nws + ®;, where

n is an integer).

| X*ljw) 1)

| X*(fleo, = wqh) |

| X*(jes) |

—~
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(Figure-1:frequency spectra of an impulse-sampled signal)
When the composite spectrum is filtered by a low pass filter, the frequency component at

o=nws £ , will appear in the output as if it were a frequency component at ®= ;. The

frequency o=nws+ ®; is called an alias of ®, and this phenomena is called aliasing.

L ecture Note 9(Pulse Transfer function)

Pulse Transfer Function:

The Pulse transfer function relates z-transform of the output at the sampling instants to the Z-

transform of the sampled input.

R(s) :I.-"' :R*m Gls) Cis) C/ CH*(5)

(Block Diagram of a system with sampled input and output )

Now

@) m =) Gehen @) iF an bnpulre Function)
o
= @= ) ghT)I¢=EKT)

L)

Again
c@)=r@g@+rTlgt—-TI+ =
w G T) m v (@gRT) + (Mg (G = LT} + v

J_:-
— ok T) - z rT)g kT — al)
=0
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W
-C@= ) Zﬂwwmw-ﬂm:-k
b T i

Using real convolution theorem

@
Clzl= RBEEGEI= Gzl = FTs]

G(z) as given by the above equation ,the ratio of output C(z) and the input R(z) is called the

pulse transfer function.

Starred Laplace Transform of the Signal involving Both

Ordinary and starred Laplace Transform:

e (1)

0@
0 X 0 G(s) 0,
R(s) R*(s) C(s)

(Block Diagram of an Impulse sampled system)

The output of the system is C(s) = G(s)R (8). The transfer function of the above system is
difficult to manipulate because it contains a mixture of analog and digital components.
Thus,it is desirable to express the system characteristics by a transfer function that relates
r[(t) to cD(t), a fictitious sampler output as shown in the above figure.

Now
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o

C@m ?; kT e K%

Since c(kT) is periodic,

=

C@ag Y C@bnjws) with () = 0

Siliarly,

=l =

R (g)m ﬁimﬁ'ﬂﬂ + 1 )

Again,

o o
c@ug Y Cormen =g Y B s me6E £ njws)

¥t T I -y

Since RC7) is periodic, A7 + mimiz) = R*(z) Thus

@)= -}i B @G+ nfws) = mnif% i)

By defining

o

il
F @)=y Z 86 + nfes)

Then

@)= @ E =6 —g.%

The above equation is referred as the starred transfer function. By substituting = ™ e in
the previous expression we will directly get the z-transfer function G(z) as

cix)

Fiz)

Gl)=
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ecture Note 10(Pulse T.F. of Open Loop &
Closed Loop Systems)

Pulse Transfer function of Cascaded Elements:

: C*(s)
r(t)y (1) d(t) _d(t) . L e(t)
— ! —_— l.r_:rg =
R(s)  R(s) Gile) D(s) D" (s) © C(s)

(Cascaded elements separated by a sampler)

The input-output relations of the two systems G1 and G2 are described by D(z)=G1(z)R(z)
and C(z) = G2(z)D(z), So the input-output relation of the overall system is C(z) =
G1(2)G2(2)R(2).

So it can be concluded that the z-transfer function of two linear system separated by a

sampler are the products of the individual z-transfer functions.
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a0
i C"(s)
rt)  r(t) d(t) et
~ o @ - ' :
R R | o P C(s)

(Cascaded elements not separated by a sampler)

Here the input-output relations of the two systems G1 and Gz are described by

C(s)= G1(S)G2(S)R‘ ‘(s) and the output of the fictitious sampler is

C(z) =Z [G1(s)G2(s)]R(2)

z-transform of the product G1(s)G2(s) is denoted as Z [G1(5)G2(s)] = G1G2(z) = G2G1(2)
One should note that in general G1G2(z) #G1(z2)G2(z), except for some special cases. The
overall output is thus, C(z) = G1G2(z)R(2).

Pulse Transfer Functions of Closed Loop Systems:

\ E(s E” {5 C(s)

€ {f c(t)

(fl

His) =

(closed loop system with a sampler in the forward path)

For the above closed loop system, the output of the sampler is regarded as an input to the
system. The input to the sampler is regarded as another output. Thus the input-output

relations can be formulated as

E(@) = R(e)- G(HEE" ()
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Taking starred Laplace transform on both sides

F{Y = R*(x) - GH*{HF*(=)

Or

£ @) m

Since

@)= GWER 50 07G) m et
c¢) 6@ cE) G

“EF® 1+¢E@® ' E@o_1+GHD

Lecture Note 11(Mapping between s & z-plane)

Mapping between s-plane and z-plane:

The absolute stability and relative stability of the LTI continuous-time closed loop control

system are determined by the locations of closed loop poles in the s-plane. Since the complex

variables z and s are related by = 7% , the pole and zero locations in the z-plane are related
to the pole and zero locations in the s-plane. So the stability of LTI discrete-time time closed
loop control system are determined in terms of location of poles of the closed-loop pulse

transfer function.

A pole in the s plane can be located in the z plane through the transformation = ™ @
Since ¥ = 0+ jo

So =T +jw)=aToge [Tw=aTe [(oe] @l +/slawl)= ¢ TocwT

As @ is negative in the left half of the s-plane, so the left half of s-plane corresponds to
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|zl m 279 =21 (shown by region A inside of an unit circle).

For the /& axis @ =0 it corresponds to Izl =1 That is the imaginary axis in the s-plane

corresponds to the unit circle in the z-plane (shown by region B).

For positive values of 2 in the right half of the s-plane corresponds to
Irn [m
‘ s=plane z-plane
|
B
A C Re A == Re
B
J C

|zl m 279 = 1 (shown by region C outside the unit circle)

(mapping regions of s-plane on to the z-plane)

Thus, a digital control system is
(1) Stable if all poles of the closed-loop transfer function are inside the unit circle on

the z-plane,
(2) Unstable if any pole is outside the unit circle and/or there are poles of multiplicity

greater than one on the unit circle, and
(3) Marginally stable if poles of multiplicity one are on the unit circle and all other

poles are inside the unit circle.
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Lecture Note 12(Stability Analysis)

Stability Analysis of closed loop system in z-plane:

Consider the following closed loop pulse transfer function of an linear time invariant single-

input-single-output discrete time control system

Q) 6@
FEY 1+ @)

The stability of the above system can be determined from the location of closed loop poles in

z-plane which are the roots of the characteristic equation

1+ GH(Z) =0

1. For the system to be stable, the closed loop poles or the roots of the characteristic
equation must lie within the unit circle in z-plane. Otherwise the system would be

unstable.

2. Ifasimple pole lies at lzl= 1 , the system becomes marginally stable. Similarly if a
pair of complex conjugate poles lies on the unit circle in the z-plane, the system is

marginally stable. Multiple poles on unit circle make the system unstable.
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L ecture Note 13(Routh Stability criterion)

Stability Analysis by use of Bilinear Transformation and

Routh Stability Criterion:
It is a frequently used method in stability analysis of discrete time system by using bilinear
transformation coupled with Routh stability criterion. This requires ransformation from z-
plane to another plane called w-plane.

The bilinear transformation defined by

W+
Z m
eW il

where a, b, ¢, d are real constants. If we considera=b =c =1 and d = —1, then the

transformation takes a form

W1

W =1
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or,

-1

W o

This transformation maps the inside of the unit circle in the z-plane into the left half of the w-

plane. Let the real part of W be a and imaginary part be p, so that W = @& + /& _ The inside of

the unit circle in z-plane can be represented by

v 1 w1
|z:|= W =1 _ll;;;“-l
=E§Ii§;i‘§: ‘;:l=(ﬂr+l}:+ﬁ=ﬁ(ﬂr+l}:—ﬂ==?c:{f=r.:g

Thus inside of the unit circle in z-plane maps into the left half of w-plane and outside of the
unit circle in z-plane maps into the right half of w-plane. Although w-plane seems to be
similar to s-plane, quantitatively it is not same.

W =1

In the stability analysis using bilinear transformation, we first substitute W —1 inthe

characteristics equation

P@lm @z @ 2"t b Gy 2 b G = 0

and simplify it to get the characteristic equation in w-plane
Q0v)m Bew™ 4+ Bow ™ e By W By =m0

Once the characteristics equation P(z)=0 is transformed as Q(w) = 0, Routh stability

Criterion is applied in the same manner as in continuous time systems.
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Lecture Note 14(Jury Stability Test)

Jury Stability Test:

Assume that the characteristic equation P(z) is a polynomial in z as follows,

FElm G 2" 4 @ 2" % b ok Gy B 4

Where @a # @ Then the Jury table can be formed as shown below

Row | 2Y 2l |- |2 2
1 Mg | Bp_1 | fg
2 o 1 ses | fip—1 | B
3 | baci | b2 |---| Bo
4

2n-4 | po il

P 34
203 | 2 | @ | % age
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Where,
e : ;
ER-E? érkiﬂ.k 2 |'r\ -lejzunrﬂ-—l
E}H—l EIH‘-'Z-R | — M
C — by bees | k=012 ..,n-2
- g IPE-H r
9= Eq Pradl’ from 01,2

This system will be stable if the following conditions are all satisfied:
1. |&nl= 8o

5 [Pz|infzey =0

3. Lpzlllllig.; @ forn even and -E-'F'[E"||:::|‘:z"= “ @ for odd

4. b o= Bol  Vonoale el .. lgal = |,
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Module — 2: State Space Analysis
Lecturer: 1
: Introduction to State Space analysis

: Understanding the Concepts of State, State Variable and State Model of continuous time

system
: State Model of Linear systems

Analysis and design of the non-linear, time variant, multivariable continuous system can be
easily done using Modern control system i.e. state — space — based methods, where system
model are directly written in the time domain. Its performance in real application where plant
model is uncertain has been improved using robust control system, i.e. combining the modern

state space and classical frequency domain techniques.
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In this chapter, a basic study of time domain analysis of linear, time invariant, continuous
system for single input single output (SISO) system has been studied, using state space based

method.
Defining the following basic terms:

State: State represents the status of a dynamical system, with the minimum set of

variables ( known as state variables) such as the knowledge of these variables at t=t,,
together with the knowledge of the inputs for £ & o, completely determines the

behavior of the system for & & &a

State Variable: The variables that represent the status of the system at any time t, are

called state variable.
State vector: A set of state variable expressed in a matrix is called state vector.

State space: Any n-dimensional state vector determines a point (called the state point)

in an n-dimensional space called the state space.

State Trajectory: The curve traced out by the state point from £ =%y to ' =% in the

direction of increasing time is known as the state trajectory.

State Model: The state vectors with input/output equations constitute the state model

of the system.
State Model of a Continuous time-invariant system:

A@) = Ax @)+ Bulf)r  State equation ... (1)

) = Caled+ Duled; Output equation ... (2)
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Where % is X 1 state vector, W& is M X1 input vector, A is # X1 system matrix
and B is 7 X7 input matrix. Similarly Y& is 2 X 1 output vector, C is ¥ X% output

matrix and D is ¥ #& 1t transmission matrix.

Lecturer: 2

: State Model of Linear SISO systems
Linearization of the State Equation

Linearization of the state Equation:

The state equation & = £ {1} of a general time — invariant, non-linear continuous
system can be linearized, by considering small variations about an equilibrium point (X,, u,)
ie. &= u) ™m0 where ¥u, %o is assumed initial state point and input vector

respectively. is state space.

Since the derivatives of all the state variables are zero at the equilibrium point, the system

continues to lie at the equilibrium point unless otherwise disturbed. The state equation can be
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linearized about the operating point (xgrttg) by expanding it into Talyor series and

neglecting terms of second and higher order.
The linearized component equation can be written as the vector matrix equation

Pm AY 4 B

Where
A:
a8 o Ofn
O e T
, B=
Ufn . Ofn

e O T

All the partial derivatives in the matrices A and B defined above (called the Jacobian

matrices) are evaluated at the equilibrium state ¢ a- #al,

Lecturer: 3
: State space representation using physical variable

Introduction: In this representation the state variables are real physical variables, which can
be measured and used for manipulation or for control purposes. The approach generally
adopted is to break the block diagram of the transfer function into subsystems in such a way

that the physical variables can be identified.

How to solve a problem
1. For an electrical network, apply any of the Network analysis (such as KCL, KVL, Mesh
and Node).
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2. Write the equations such that all the elements of the network have been considered.
3. The equation will be having derivative terms for energy storage elements.
4. Try to convert each equation to single order.

5. Finally, write the state space equation.

For a mechanical system
1. For Mechanical system, convert the physical Model into its equivalent electrical network
using Force voltage or Force current analogy.

2. Electrical network can be solved as above.

Example:1 Example: 3

Exocsple -t
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Solution: Example.1

Stuts Space @fﬂ_wadm Usiey PW Gk

é’l L' 2 )df.': Vé)
L J
‘)l @ ){1: ',0)
7z
& e ¥, = ‘;&J
g'}n AV —1 i CI Iy
= —I;’ al”
&)
: £ o S e o=
% o O G
diy ‘_ﬁ DT B
# - b
o
=} = *{
o c. c - e
!
o » e
N ’ 0
= (
! _ﬁ )_'(
" 0 r
_ Ls ( 2 Es
;I
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Solution: Example.2,3

E_\" = ,q(:') - 3:6’)
— Y0 = dy,ﬁ)/d”_
X, @) = %
):|e; o f o o xié’ =
B0 | teeed —(ap) % B A B B
. | e T m ™ ’ » ¢/ o
.- o ° T iﬂg ’ -
R La Y x6 = O
Ex? / %0 = -G
- L ]
e@) &b i ‘j '('1 F’ = %
A8
- iz
i Yz gﬂf - & la
3 A i La
e - & o la o
% Fo r o X, o
I
M) = o ye Ky/y X, + o ee’
2
i — &, *y =
= 2 K/ =
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Lecturer: 4

: State space representation using Phase Variable or Observable canonical form and
Alternate Phase Variable or Controllable Canonical form.

: Phase variable formulations for transfer function with poles and zeros.

Introduction: It is often convenient to consider the output of the system as one of the state
variable and remaining state variable as derivatives of this state variables. The state variables
thus obtained from one of the system variables and its (n-1) derivatives, are known as n-

dimensional phase variables.

Steps to be followed:

1. Obtain the differential equation for the given Physical Model.

2. Obtain the transfer function from the given differential equation.

An example has been solved both in phase and alternate phase variable form.
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Lecturer: 5

: State space representation using Canonical Variables (Normal form or Jordan Normal Form

Representation).
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: Derivation of Transfer function for State Model

Conider the St tode]

X = A—M*Qu
Y= Cot Du

2 Xt —K6) = AX®) T dul) %,

ond Vi) = ey + 0 — (D)

Fo'ofmef"l@ (Zl—-—@ X@ = X6 Rug)

Qa %‘7 rnadrie a.ég;évn on bha Modiee

’ Ya) Gr-8) v+ (2T-4) ’ﬂ:f:;__‘@
&M% o vadire ﬁ nw i et @, e

s 7
Y(sj = IC (x:rf@ IX(QJ B O (;,1:49 Qup + DUk

vt be) Car\ai‘&mﬁ 2eno |, “"S"ff

é,f,C ol D )i

A’Sﬁum@
y@) = C(er- ) Cu@ + D Uk)
Tey= 10 _ ¢ &I—-A)_fﬁrf D)
Uy
48 i‘ﬁﬂ &P 0
oot (21 -4)
Lecturer: 6
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: Eigen values and Eigenvectors

Introduction : - Eigen values and eigen vector are special form of square matrix. While the
eigen value parameterizes the diagonal properties of the system (time scale, resonance
properties, amplifying factor etc), the eigenvector define the vector coordinate of the normal
mode of the system. Each eigenvector is associated with particular eigen values. The general

state of the system can be expressed as a combination of eigenvector.
Eigen vector can be explained as a vector ‘X * such that matrix operator ‘A’ transforms it to a
vector ‘44 * (4 s a constant) i.e. to a vector having the same direction in state space as the

vector X

Such a vector X is a solution of the equation
AX = AX

OrAk14x =0 o (AI-4Ax =0

Now, the above equation has a non-trivial solution of and only if

1E=-1

(Ar-Af=0 A= 2" +a,l

-
=2

+ g A" *+..... +a, =0
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Examples has been solved for different cases :
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Lecturer: 7
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: Time domain solution of State Equation

: Properties of the State Transition Matrix
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Lecturer: 8

: Computation of State transition matrix
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Lecturer: 9

: Computation by Techniques based on the Cayley — Hamilton Theorem
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Lecturer: 10
: Computation by Techniques based on the Sylvester’s Expansion theorem
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Lecturer: 11

: Concept of Controllability and Observability

CONCEPTS OF CONTROLLABILITY AND OBSERVABILITY

Controllability

A system is said to be controllable if it is possible to transfer the system state from any initial
state x(Ta ) to any desired state x(t) in specified finite time by a control vector u(t).

A system is completely controllable if all the state variables are controllable.

Controllability criterion

Controllability is a property of the linkage between the input and the state & thus involves the
matrices A and B.

For an %™ order linear time invariant system, controllable can be determined from the matrix
shown below

de=/[B AB A*B ... A=ipy is of rank n.

This test for controllability is called Kalman’s test.

Observability

A system is said to be observable if each state x(t) could be determined from measurement of
the output over a finite interval of time 0< t < r .

Observability criterion

Observability is a property of linkage between the output & the state & thus involves the
matrices A and C.

For an 1™ order linear time invariant system is completely observable if and only if the
observability matrix

Qa=[CF 8 AYCY 1ATRCY 58 AFE-1IGY is of rank n.

This is Kalman’s test for observability.

Solved Problems

1) A dynamic system S represented by the state equation

¢ 1 0 0
0 o 1 |x 0
X= -1 -2 -3 + 1ir
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2)

3)

Check whether the system is completely controllable.

o0 1
a D
Ans:- A =l-1 -2 —3 ,

w8 5 Ak H S LR R =

The controllability matrix is

0 0 1
] 0 1 -3
Q.=[B AB A°B ] = [1 -3 7 ] and the determinant of Q& # 0 and the

rank of matrix is 3. Hence the system is completely controllable.

The state equation for a system is

-3 —llp_

X= + -11]r

Check whether the system is completely controllable.

Ans:- A = rza -nll B = |-11J

ag - [2 7l [11I 2

The controllability matrix

1 -—
Q.=[B AB ] = |—1 221 and the determinant of & = 0 and the rank of

matrix is 1. Hence the system is not completely controllable.

A linear system is described by a state model

-3 —1]?_

1
X= |-1]r and y= [1 -1lx

Determine whether the system is completely observable.
Ans:- A = -3 -1] = [-11] , cT = -11]
arcv = 03 o) 1] - [ A

The observability matrix

1 -5
@a=[CTF ATCT | = [ and determinant of Qs # 0 and the rank of

matrix is 2. Hence the system is completely observable.
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Lecturer: 12

. Effect of Pole-zero Cancellation in Transfer Function

POLE-ZERO CANCELLATIONS AND STABILITY

Consider the linear time-invariant system given by the transfer function.

_ bpps™ + Bno18™ 1 4+ -+ bys+ by _ N(s)
s +a, 8" 4+ das+ag D(s)

H(s)

Recall that this system is stable if all of the poles are in the OLHP, and these poles are the
roots of the polynomial D(s). It is important to note that one should not cancel any common
poles and zeros of the transfer function before checking the roots of D (s). Specifically,
suppose that both of the polynomials N(s) and D (s) have a roots =a f or some complex (or
real)number a. One must not cancel out this common zero and pole in the transfer function
before testing for stability. The reason for this is that, even though the pole will not show up
in the response to the input, it will still appear as a result of any initial conditions in the
system, or due to additional inputs entering the system (such as disturbances). If the pole and
zero are in the CRHP, the system response might blow up due to these

Initial conditions or disturbances, even though the input to the system Is bounded, and this

would violate BIBO stability

To see this a little more clearly, consider the following example. Suppose the transfer

function of a linear system is given by

L s—1 _ Nis)
)= 3053~ D)

Nothing that s*+2s-3=(s+3)(s-1) suppose we decided to cancel out the common pole and zero

at s=0 to obtain

1

H(s) = s+ 3
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Based on this transfer function we might conclude that the system is stable, since it only has a
pole in OLHP . what we should actually dois look at the original denominator D(s) , and
correctly conclude that the system is un stable because one of the pole in the CRHP. To see
why the pole zero cancellation hide the stability of the system first writes out the differential

equation corresponding to the transfer function we obtain

J+2y—3y=1u—1u .
Taking Laplace transformation on both side and taking initial condition in count

SQY{S:I — sy(0) — y(0) +2sY (s) — 2y(0) — 3Y (s) = sU(s) —u(0) = U(s) .
Rearranging the equation we get

s—1 s+2 1
s?4+25—3 LS}+33+23—3y()+52+25—3y{)
— ce—

H{s=)

Y(s)= u(0) .

s2 4+ 25— 3

Note that the denominator polynomial in each of the terms on the right hand sides is equal to
D(s) (the denominator of the transfer function). For simplicity, suppose that y(0)=y, (for

some real number yg) y'(0) = 0 and u(0) = 0.The partial fraction expansion of the term
542 y

3 . a. o440

s?+25 =37 s oiven by

5+ 2 _ Y 1 n 1
219530 T 513 521

M (g3t 4 et) >0
and this contributes the term 4 ( ] T ) "~ 7 7 to the response of the system. Note
that the e' term blows up, and thus the output of the system blows up if y, is not zero, even if

the input to the system is bounded.
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MODULE-3

Lecture-1

Behaviour of Non linear Systems, Investigation of nonlinear systems

Behaviour of Non linear Systems:

The most important feature of nonlinear systems is that nonlinear systems do not obey
the principle of superposition. Due to this reason, in contrast to the linear case, the response
of nonlinear systems to a particular test signal is no guide to their behaviour to other inputs.
The nonlinear system response may be highly sensitive to input amplitude. For example, a
nonlinear system giving best response for a certain step input may exhibit highly
unsatisfactory behaviour when the input amplitude is changed. Hence, in a nonlinear system,
the stability is very much dependent on the input and also the initial state.

Further, the nonlinear systems may exhibit limit cycles which are self-sustained
oscillations of fixed frequency and amplitude. Once the system trajectories converge to a
limit cycle, it will continue to remain in the closed trajectory in the state space identified as
limit cycles. In many systems the limit cycles are undesirable particularly when the amplitude

is not small and result in some unwanted phenomena.

') %y

Stable 1imit
cycle

\-J ’_\ Unital’.l.: Nk

cvcle

(al

Figure 6.1
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A nonlinear system, when excited by a sinusoidal input, may generate several harmonics
in addition to the fundamental corresponding to the input frequency. The amplitude of the
fundamental is usually the largest, but the harmonics may be of significant amplitude in many

situations.

Another peculiar characteristic exhibited by nonlinear systems is called jump
phenomenon. For example, let us consider the frequency response curve of spring-mass
damper system. The frequency responses of the system with a linear spring, hard spring and
soft spring are as shown in Fig. 6.2(a), Fig. 6.2(b) and Fig. 6.2(c) respectively. For a hard
spring, as the input frequency is gradually increased from zero, the measured response
follows the curve through the A, B and C, but at C an increment in frequency results in
discontinuous jump down to the point D, after which with further increase in frequency, the
response curve follows through DE. If the frequency is now decreased, the response follows
the curve EDF with a jump up to B from the point F and then the response curve moves
towards A. This phenomenon which is peculiar to nonlinear systems is known as jump

resonance. For a soft spring, jump phenomenon will happen as shown in fig. 6.2(c).

f‘x

/R %
Fig. 6.2(a) Fig. 6.2(b) Fig. 6.2 (¢)

When excited by a sinusoidal input of constant frequency and the amplitude is increased from
low values, the output frequency at some point exactly matches with the input frequency and
continue to remain as such thereafter. This phenomenon which results in a synchronization or
matching of the output frequency with the input frequency is called frequency entrainment

or synchronization.
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Classification of Nonlinearities:

The nonlinearities are classified into i) Inherent nonlinearities and ii) Intentional
nonlinearities.

The nonlinearities which are present in the components used in system due to the inherent
imperfections or properties of the system are known as inherent nonlinearities. Examples are
saturation in magnetic circuits, dead zone, back lash in gears etc. However in some cases
introduction of nonlinearity may improve the performance of the system, make the system
more economical consuming less space and more reliable than the linear system designed to
achieve the same objective. Such nonlinearities introduced intentionally to improve the
system performance are known as intentional nonlinearities. Examples are different types of
relays which are very frequently used to perform various tasks. But it should be noted that the
improvement in system performance due to nonlinearity is possible only under specific
operating conditions. For other conditions, generally nonlinearity degrades the performance

of the system.
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Lecture-2

Saturation, Friction, Backlash, Relay, Multivariable Nonlinearity.

Common Physical Non Linearities:

The common examples of physical nonlinearities are saturation, dead zone, coulomb friction,
stiction, backlash, different types of springs, different types of relays etc.

Saturation: This is the most common of all nonlinearities. All practical systems, when driven
by sufficiently large signals, exhibit the phenomenon of saturation due to limitations of
physical capabilities of their components. Saturation is a common phenomenon in magnetic
circuits and amplifiers.

Dead zone: Some systems do not respond to very small input signals. For a particular range
of input, the output is zero. This is called dead zone existing in a system. The input-output

curve is shown in figure.

Cutput Cutput

Input Input

Saturation Dead-zaone

Backlash: Another important nonlinearity commonly occurring in physical systems is
hysteresis in mechanical transmission such as gear trains and linkages. This nonlinearity is
somewhat different from magnetic hysteresis and is commonly referred to as backlash. In
servo systems, the gear backlash may cause sustained oscillations or chattering phenomenon

and the system may even turn unstable for large backlash.
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Relay: A relay is a nonlinear power amplifier which can provide large power

amplification inexpensively and is therefore deliberately introduced in control systems. A
relay controlled system can be switched abruptly between several discrete states which are
usually off, full forward and full reverse. Relay controlled systems find wide applications in
the control field. The characteristic of an ideal relay is as shown in figure. In practice a relay
has a definite amount of dead zone as shown. This dead zone is caused by the facts that relay
coil requires a finite amount of current to actuate the relay. Further, since a larger coil current
is needed to close the relay than the current at which the relay drops out, the characteristic
always exhibits hysteresis.

Multivariable Nonlinearity: Some nonlinearities such as the torque-speed characteristics of a
servomotor, transistor characteristics etc., are functions of more than one variable. Such

nonlinearities are called multivariable nonlinearities.
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Lecture-3,4

Basic Concepts, Singular Points: Nodal Point, Saddle Point, Focus Point, Centre or Vortex

Point

The Phase Plane Method:
This method is applicable to second order linear or nonlinear systems for the study of the
nature of phase trajectories near the equilibrium points. The system behaviour is qualitatively
analysed along with design of system parameters so as to get the desired response from the
system. The periodic oscillations in nonlinear systems called limit cycle can be identified
with this method which helps in investigating the stability of the system.
Singular points: From the fundamental theorem of uniqueness of solutions of the state
equations or differential equations, it can be seen that the solution of the state equation
starting from an initial state in the state space is unique. This will be true if fi(x;, x2) and
f5(x1,X2) are analytic. For such a system, consider the points in the state space at which the
derivatives of all the state variables are zero. These points are called singular points. These
are in fact equilibrium points of the system. If the system is placed at such a point, it will
continue to lie there if left undisturbed. A family of phase trajectories starting from different
initial states is called a phase portrait. As time t increases, the phase portrait graphically
shows how the system moves in the entire state plane from the initial states in the different
regions. Since the solutions from each of the initial conditions are unique, the phase
trajectories do not cross one another. If the system has nonlinear elements which are piece-
wise linear, the complete state space can be divided into different regions and phase plane
trajectories constructed for each of the regions separately.
Nodal Point: Consider eigen values are real, distinct and negative as shown in figure (a). For
this case the equation of the phase trajectory follows as z,-c (z)) k1

Ag
Where k1= (42 ) 2 0 so that the trajectories become a set of parabola as shown in figure

(b) and the equilibrium point is called a node. In the original system of coordinates, these

trajectories appear to be skewed as shown in figure (c).
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If the eigen values are both positive, the nature of the trajectories does not change, except that
the trajectories diverge out from the equilibrium point as both z;(t) and z,(t) are increasing
exponentially. The phase trajectories in the x/-x2 plane are as shown in figure (d). This type
of singularity is identified as a node, but it is an unstable node as the trajectories diverge from
the equilibrium point.

Where Zi(t)=2"F 7,(0) 2(t)= #72% 2,(0)

Saddle Point:

Consider now a system with eigen values are real, distinct one positive and one negative.
Here, one of the states corresponding to the negative eigen value converges and the one
corresponding to positive eigen value diverges so that the trajectories are given by z, = ¢(z))™
or (z1)"z, = ¢ which is an equation to a rectangular hyperbola for positive values of k. The
location of the eigen values, the phase portrait in z; — z, plane and in the Xx; — X, plane are as
shown in figure. The equilibrium point around which the trajectories are of this type is called

a saddle point
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£z
Jjo
| —hafhy = Kz
p— = -
Xy | 1 a I
-
(a) Location of eigenvalues
Xz
72 - 7j (h) Saddle point in (z).72)-plane

WA
PN

(c) Saddle pointin (x,, x:)-plane

Phase trajectories around saddle point

Focus Point:

Consider a system with complex conjugate eigen values. The canonical form of the state

equation can be written as

BV 2kl B

Using linear transformation, the equation becomes

! . -
Pyt 43 Gl 1
Vel=l—cx =1l
- -

- — e T r - _1 3
ﬂE.T*: @y, + Oy, kN

The slope dy,  ayp +wyy M-k

dy; -
Define dy, =tamif ¥y =tan@
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tanf — K
We get tany =1 + K ten® or tan(¥ =)=k

This is an equation for a spiral in the polar coordinates. A plot of this equation for

negative values of real part is a family of equiangular spirals. The origin which is a

singular point in this case is called a stable focus. When the eigen values are complex
conjugate with positive real parts, the phase portrait consists of expanding spirals as shown in
figure and the singular point is an unstable focus. When transformed into the x;-x, plane, the
phase portrait in the above two cases is essentially spiralling in nature, except that the spirals

are now somewhat twisted in shape.

) ¥a
5 . ﬁiﬁ £
i : Q:”/ b
ko

|

(a) Eigen values (h) Phase transectarics-siahle foous

Phase trajectories around stable focus

¥z
o
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=
1
I
I
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{a) Eigen wvalues (b} Phase Irajectorics unstable focus

Phase trajecteries around unstable focus
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Centre or Vortex Point:

Consider now the case of complex conjugate eigen values with zero real parts.
ie., 7\,1, 7»2 =% jCO

ﬂ Jary b

dy, ==Jwy; = 1% from which ¥1 €%1 +¥2 dv: =0

Integrating the above equation, we get 3% + ¥ = R? which is an equation to a circle of
radius R. The radius R can be evaluated from the initial conditions. The trajectories are thus
concentric circles in y;-y» plane and ellipses in the x;-x, plane as shown in figure. Such a
singular points, around which the state trajectories are concentric circles or ellipses, are called

a centre or vortex.

djm 4y, X
NN/
(a) Eigen values (b) Center in v, - ¥, plane (c) Center in x; - x; plane

Phase trajectories around vortex or center
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Lecture-5

Stability of Non Linear Systems: Limit Cycles

Limit Cycles:

Limit cycles have a distinct geometric configuration in the phase plane portrait, namely, that
of an isolated closed path in the phase plane. A given system may have more than one limit
cycle. A limit cycle represents a steady state oscillation, to which or from which all
trajectories nearby will converge or diverge. In a nonlinear system, limit cycles describes the
amplitude and period of a self sustained oscillation. It should be pointed out that not all
closed curves in the phase plane are limit cycles. A phase-plane portrait of a conservative
system, in which there is no damping to dissipate energy, is a continuous family of closed
curves. Closed curves of this kind are not limit cycles because none of these curves are
isolated from one another. Such trajectories always occur as a continuous family, so that there
are closed curves in any neighborhoods of any particular closed curve. On the other hand,
limit cycles are periodic motions exhibited only by nonlinear non conservative systems.

As an example, let us consider the well known Vander Pol’s differential equation

d¥x s T
F—H(l—?. ]E-iﬂ.—ﬂ

This describes physical situations in many nonlinear systems.

In terms of the state variables 1 I* and *z —Xz we obtained

Xy =X,

By= pQl— xddez _x
The figure shows the phase trajectories of the system for p > 0 and p < 0. In case of p> 0 we
observe that for large values of x1(0), the system response is damped and the amplitude of
x1(t) decreases till the system state enters the limit cycle as shown by the outer trajectory. On

the other hand, if initially x1(0) is small, the damping is negative, and hence the amplitude of
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x1(t) increases till the system state enters the limit cycle as shown by the inner trajectory.

When p <0, the trajectories moves in the opposite directions as shown in figure.

Stable
o .liinit \L/
cycle
| 5 o
- j X =Y
'\\ Unstable
i limit

cycle

i) p>0 (i) u<0

A limit cycle is called stable if trajectories near the limit cycle, originating from outside or
inside, converge to that limit cycle. In this case, the system exhibits a sustained oscillation
with constant amplitude. This is shown in figure (i). The inside of the limit cycle is an
unstable region in the sense that trajectories diverge to the limit cycle, and the outside is a
stable region in the sense that trajectories converge to the limit cycle.

A limit cycle is called an unstable one if trajectories near it diverge from this limit cycle. In
this case, an unstable region surrounds a stable region. If a trajectory starts within the stable
region, it converges to a singular point within the limit cycle. If a trajectory starts in the
unstable region, it diverges with time to infinity as shown in figure (ii). The inside of an
unstable limit cycle is the stable region, and the outside the unstable region.

In the phase plane, a limit cycle is defied as an isolated closed curve. The trajectory has to be
both closed, indicating the periodic nature of the motion, and isolated, indicating the limiting
nature of the cycle (with near by trajectories

converging or diverging from it).
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Depending on the motion patterns of the trajectories in the vicinity of the limit cycle, we can
distinguish three kinds of limit cycles
e Stable Limit Cycles: all trajectories in the vicinity of the
limit cycle converge to it as t — oo (Fig. 2.10.a).
e Unstable Limit Cycles: all trajectories in the vicinity of
the limit cycle diverge to it as t — o (Fig. 2.10.b)
e Semi-Stable Limit Cycles: some of the trajectories in

the vicinity of the limit cycle converge to it as t — oo (Fig. 2.10.c)

X3 con.vergif.-?g . dz'jfergz'ﬁg ¥
A Tajectories 4 [Tajectories diverging

B converging _
= ! oS :?E;Eiziak = X H?fj ' \H -
P2 N

{imif cvcle limit cycle limit cycle

(a) (5) (c)

Fig. 2.10 Stable, unstable, and semi-stable limit cycles
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Lecture-6

Construction by Analytical Method, Construction by Graphical Methods

Construction of Phase Trajectories:

Consider the homogenous second order system with differential equations

i3y ehi
Mt f— e hix =
o -r-f’__f?ﬂ-rh 0

This equation may be written in the standard form

T4 dwnt 4wk x=0

where ( and o, are the damping factor and undamped natural frequency of the
system.Defining the state variables as x = x; and %= x,, we get the state equation in the state
variable form as

= x,

Xo =—28 (e — i,
These equations may then be solved for phase variables x; and x;. The time response plots of
X1, Xz for various values of damping with initial conditions can be plotted. When the
differential equations describing the dynamics of the system are nonlinear, it is in general not
possible to obtain a closed form solution of x;, X,. For example, if the spring force is
nonlinear say (k; x + k, x°) the state equation takes the form

X= X2

Solving these equations by integration is no more an easy task. In such situations, a
graphical method known as the phase-plane method is found to be very helpful. The
coordinate plane with axes that correspond to the dependent variable x; and x; is called
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phase-plane. The curve described by the state point (x;,Xx;) in the phase-plane with respect to
time is called a phase trajectory. A phase trajectory can be easily constructed by graphical
techniques.
Isoclines Method:
Let the state equations for a nonlinear system be in the form
xy=f (x1.X2)
2= f5(X1,X2)
When both fi(x;x,) and f5(x;,X2) are analytic.
From the above equation, the slope of the trajectory is given by

axg  f2(x1,x2)
dx, flxlxz)

Therefore, the locus of constant slope of the trajectory is given by

£r(x1,x2) =M fi(x1 X2)

The above equation gives the equation to the family of isoclines. For different values of M,
the slope of the trajectory, different isoclines can be drawn in the phase plane. Knowing the
value of M on a given isoclines, it is easy to draw line segments on each of these isoclines.
Consider a simple linear system with state equations
Xy = Xg

Ay =—g = Ay
Dividing the above equations we get the slope of the state trajectory in the x;-x; plane as

-
-

b

For a constant value of this slope say M, we get a set of equations

-1
g =m?.’1

which is a straight line in the x;-x; plane. We can draw different lines in the x;-x; plane for
different values of M; called isoclines. If draw sufficiently large number of isoclines to cover
the complete state space as shown, we can see how the state trajectories are moving in the
state plane. Different trajectories can be drawn from different initial conditions. A large
number of such trajectories together form a phase portrait. A few typical trajectories are

shown in figure given below.
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Phase plot

The Procedure for construction of the phase trajectories can be summarised as below:
1.For the given nonlinear differential equation, define the state variables as x; and x; and

obtain the state equations as

2.Determine the equation to the isoclines as

g - Flry.xg)

i, Xg =M

3. For typical values of M, draw a large number of isoclines in X;-X; plane

4. On each of the isoclines, draw small line segments with a slope M.

5. From an initial condition point, draw a trajectory following the line segments

With slopes M on each of the isoclines.

Delta Method:

The delta method of constructing phase trajectories is applied to systems of the form
T+ fG0=0

Where f G20, 2) may be linear or nonlinear and may even be time varying but must be

continuous and single valued.
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With the help of this method, phase trajectory for any system with step or ramp or any time
varying input can be conveniently drawn. The method results in considerable time saving
when a single or a few phase trajectories are required rather than a complete phase portrait.
While applying the delta method, the above equation is first converted to the form

Rdagle +d8G. A 80]=10

In general 3¢ 2. t] depends upon the variables x, & and t, but for short intervals the changes

in these variables are negligible. Thus over a short interval, we have

T+ e ly + 81 =0  where § is a constant.

. _ %
Let us choose the state variables as x; = x; owy ,then

::‘..1 = G Xg
o ] |

Therefore, the slope equation over a short interval is given by

':f?.-: = _?'-1 + ot
iy Xg

With & known at any point P on the trajectory and assumed constant for a short interval, we
can draw a short segment of the trajectory by using the trajectory slope dx,/dx; given in the
above equation. A simple geometrical construction given below can be used for this purpose.
1. From the initial point, calculate the value of .

2. Draw a short arc segment through the initial point with (-9, 0) as centre, thereby
determining a new point on the trajectory.

3. Repeat the process at the new point and continue.

Example : For the system described by the equation given below, construct the
trajectory starting at the initial point (1, 0) using delta method.

i+i4+x*=0
Let * =%y, and & = Xz ,then

¥y = X

Wy = —xg — P
The above equation can be rearranged as

wy = =Gy 4 x5 + x5 —x))
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Where & = % + %7 = x,
At initial point § is calculated as 6 = 0+1-1 = 0. Therefore, the initial arc is centered at point
(0, 0). The mean value of the coordinates of the two ends of the arc is used to calculate the

next value of ¢ and the procedure is continued. By constructing the small arcs in this way the

complete trajectory will be obtained as shown in figure.

2
0.4

0.2
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Lecture-7,8

The Describing Function Method, Derivation of Describing Functions

Describing Function

Describing functions provide a method for the analysis of nonlinear systems that is
closely related to the linear-system techniques involving Bode or gain-phase plots. It is
possible to use this type of analysis to determine if /imit cycles (constant-amplitude periodic
oscillations) are possible for a given system. It is also possible to use describing functions to

predict the response of certain nonlinear systems to purely sinusoidal excitation, although this

topic is not covered helre.2 unfortunately, since the frequency response and transient response
of nonlinear systems are not directly related, the determination of transient response is not
possible via describing functions.

Certain approximate techniques exist which are capable of determining the behavior of
wider class of systems then is possible by phase plane method. These techniques are known
as the describing function techniques .Let us consider the block diagram of a nonlinear
system shown in figure, where in the blocks G(S) represent the linear elements, while the

block N represents the nonlinear elements.

Lo W4 VT B PPN

Let us assume that x to be non linearity is sinusoidal,
X = X &lmost
With such an input, the output of nonlinear element will in general be non sinusoidal periodic
function which may be expressed in terms of Fourier series as follows:
y=Ao+ Ay sinat + B, coswt + A; sln2wt + By cos 2t + -
In the absence of external input (r=0), the output y of N is feedback to its input through the
linear element G(S) tandem. It can be assumed to a good degree of accuracy that all the

harmonics of y are filtered out in the process such that input x(t) to the non linear element N
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is mainly contributed by the fundamental component of y ,i.e.(t) remains sinusoidal. Under
such conditions the harmonic content of y can be thrown away for the purpose of analysis and
the fundamental component of'y, i.e.,
¥y = Ay slnot 4+ 5y cos ek

= T alafosr + &)

The non linearity can be replaced by a described function & €¥: ) which is defined to be the
complex function embodying amplification and phase shift of the fundamental frequency

component of y relative to x, i.e.

£ Gy o) (%)ﬁ &y

Derivation of Describing Functions

The describing function of a non linear element is given by

EpulX, o) = (%") < @

Where X =amplitude of the input sinusoid; Yl=amplitude of fundamental harmonic
component of the output; and #1=phase shift of fundamental harmonic component of the
output with respect to input.

Therefore, for computing the describing function of a nonlinear element, we are simply
required to find the fundamental harmonic component of its output for an input x= X

slnat The fundamental component of the output can be written as
Yy =A, oot + 5, cos et

Where the coefficients A; and B, of the Fourier series are

il

l \_'r coE it dloet)
B=%dh =~ (1)
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1 T
A—m L velnwt dlwt)
=

The amplitude and phase angle of the fundamental component of the output are given by

s 3
Y= {{-‘11 + 5,%)
(B,
ﬁ'; = tEI.II-:I' _1—1
ok

lustrative derivation of describing functions of commonly encountered non linearities are
given below

Dead-zone and Saturation:

Idealized characteristics of a nonlinearity having dead-zone and saturation and its response to

sinusoidal input are shown in figure. The output wave form may be described as follows:

Fo=(m(0 10 S et = a@E(x D f2)

Where @ = 8107 (Pfox) 4ng £ = sln™C/y)
Using equations 1 and 2 recognizing that the output has half-wave and quarter-wave

symmetries, we have
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B1:0

4 g
A = p veinat dlwt)

4 f & . .
—f: E(X slnat — sz}aincr.ﬁt? d(wt) + —f ff[$ - ng} sinawt diowt)
— 43 : .

K
=E

{‘2 7 —a)=X@EIn28 - sin2a) + 4 [;l:r.n-mﬁ‘ — el + (ﬁ‘ - ;)r.rmﬁ]}

K_j[z(ﬁ —a)+ (En2f - sln2a)]

Therefore, the describing function is given by

7T

a :X{(D}’z)m=§‘=§
ff.}.’ﬁ-ﬂ - _ 2 Ny N "
——= 1 1-—( +slnacosa) Mg e X2 5if =5

E[E(.G‘ —a)+ Gn2f —sln2a)] :X>=5 3)

Two special cases immediately from eqn....... 3)
Case-1 saturation nonlinearity (Ply = 0. =0)
(B (XK = (L A = S@2T(F +einf cos )
Case-2 Dead-zone nonlinearity {5 — e § = T, z)
(KN (K))E = {m(0 (X< (D f2)@ 1— 24w (a+slna cosa)
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It is found that the describing functions of saturation and dead-zone nonlinearity are
frequency-invariant having zero phase shifts. In fact all nonlinearities, whose input output

characteristics are represented by a planner graph, would result in describing functions

independent of frequency and amplitude dependent.

Lecture-9

Relay with Dead-zone and Hysteresis, Backlash

Relay with Dead-zone and Hysteresis:
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The characteristics of a relay with dead-zone and hysteresis and its response to sinusoidal

input are sown in figure.

The output y may be described as follows:

& 0B wts o
+M eSS wtsT— 2
] it— F 8wt s+ a)
13 s m-alE wit s @2 - F)
y= 40 12— BY 8wt = 2

Where & = #ln™ (D{EX} and £ = slo™ {l(D - EHJ&X”

But we have

1 M
— v ooy ol @)
B1: :F "
II.:
3 ki
—_ M ocos et diosr
szl deo1)
28
— (elnf - shnc)
= =

25 E
= % X

.

1 T
AT velmot dipt)
1= ¢
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2 (-

B ? “M slmoet d (i)

ak
B T(ccrscr + cos )

M| =, | - 3
T[q{[l - (Phax) ]+ J[l - (W25 ]}
Therefore

.&1_ a2M _f't'
T__-rff( ?) )

%=Ez—?[¢w+ﬂl_(w_m];zﬁﬂ}m@]

Ky () = i [("“‘{xf * (B“{Xr] < tan”t (i—i)”f > Pl
o X < 2 {2

It is seen that ¥ is a function of X, the input amplitude and is independent of frequency.
Further, it being memory type nonlinearity, £z has both magnitude and angle .Equation (6)
is the general expression for the describing function of a relay element, from which the
describing functions of various simplified relay characteristics given below;
1. Ideal relay,(fig a) letting D=H=0 in eqn.(6)
48

=g (7)
a W : i
Hi— | - TR
N— e aa J.—.III
(a) o

2. Relay with dead-zone (fig b).letting H=0 in eqn. (6)
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. B
'a'r.;'.l.”i.?

D
TEEI = 14p |

3. Relay with hysteresis (fig c¢).Letting H=D in eqn. (6)

i Qi %
Hy) =
M 4 —gin—t H{
o ) G 'S £ )
Backlash

The characteristics of backlash nonlinearity and its response to sinusoidal input are shown in

fig. The output may be described as follows:

y =X - b/2 Dswrs T
=X - b2 ;“T{zﬁcvri.@?—ﬁ]
—x + b/2 ;(.?—35‘}5 cerﬂaﬁfa

=X +b/2 ;3.-‘{2 = ol oa (2o —ﬁ?}

=x-b2 ;@r=F)Ewts 2w

b
Where B = sin™ ( - El
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3
o) yreoswt dgr)
-

iy
=E? f: (X sinwt — g} cos wi d wt) +%f F(J;' - g) Co8 wi dwt) N

E?jzﬁ(‘? slnwie | %) cos wt d{ot)

_-qeostf
2 slncut dfwt)
A1= T rEn

= i
2 & .
_ %f: (X sinwt — %) sin wt d(at) +Eg(f - E) sln et diwt)

+

- [
E'Eﬁ (J? sinwt — E) sin i dwt)
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= Z|(5+ £)+ 5stn26]

Therefore,

[ + G | < snes (B 2
D AN n}'-“{z

Ky (X)

]
pr——,
-
L]
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Lecture-10

Stability Analysis by Describing Function Method, Jump Resonance

Describing functions are most frequently used to determine if limit cycles (stable-
amplitude periodic oscillations) are possible for a given system, and to determine the

amplitudes of various signals when these oscillations are present.

Describing-function analysis is simplified if the system can be arranged in a form
similar to that shown in Fig. 6.9. The inverting block is included to represent the inversion
conventionally indicated at the summing point in a negative-feedback system. Since the
intent of the analysis is to examine the possibility of steady-state oscillations, system input

and output points are irrevelant. The important feature of the topology shown in Fig. 6.9 is

a(jw)

Linear element

Gp (E, w)

Nonlinear element

Figure 6.9 System arranged for describing-function analysis.

that a single nonlinear element appears in a loop with a single linear element. The linear
element shown can of course represent the reduction of a complex interconnection of linear

elements in the original system to a single transfer function.

The system shown in Fig. 6.10 illustrates a type of manipulation that simplifies the use of
describing functions in certain cases. A limiter consisting of back-to-back Zener diodes is

included in a circuit that also consisting of back-to-back Zener diodes is included in a circuit
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that also contains an amplifier and a resistor-capacitor network. The Zener limiter is assumed

to have the piecewise-linear characteristics shown in Fig. 6.10b.

The describing function for the nonlinear network that includes R1, R2, C, and the limiter
could be calculated by assuming a sinusoidal signal for v, and finding the amplitude and
relative phase angle of the fundamental component of V4. The resulting describing function

would be frequency.

Amplifier with zero input
R, conductance and output

resistance
L\/ V V +

AN
L]

+
L)
Zener | I
limiter 1

(a)

L)

(b)
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Once a system has been reduced to the form shown in Fig. 6.9, it can be analyzed by means
of describing functions. The describing-function approximation states that oscillations may

be possible if particular values of E;j and ¢ 1 exist such that

a(jwl)GD(El, wl) = —1

—1
GD(Els w 1)

a(jwl) =

02

o G(io)

1/N(A) N

-0.1

-0.15

=3 —4 ) -2 -1 0

(s 4+ 10)?
(s+1)3

Gives one stable and one unstable limit cycle. The left most intersection corresponds to the

G(s) = with feedback u« = —sgny

stable one.
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Jump Resonance
Consider a nonlinear system shown in figure where in the nonlinear part has been replaced by

its describing function.

Letr (t) = R slmat
X (t) = RXsInGet + 8

It immediately follows that

€¢a) Gy ()i K, )63 ()
Aw) =1 + G Qa)E (X, @) (a)Hw)

We can also write

X(jaw) Gy (f o)
Rw) =1 4+ Gl (X, @)e(adHE ()

Further we can write

Goliw) =gyl )axplity ()}

Gy (faGs (a)H (o) = ggllexplifda (@)}

El¥ )= gn(h adaxplidn(el}

In order to simplify the analysis we assume

(i) Ewli ) =0

(ii) @al¥- e} = 25X} ie independent of frequency

So we can write
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d(fw) G (e)expfidy (@)}
R = 1 + gz (@dgnXexpfid; (@)}

In terms of magnitudes, we can write the above expression as

g1
& f1+ 2ongscosl; + gi gl
E = wt 2 E a NS

Solving for&:, we get

1
—cosfy + lcosil; — 1+ E&E—]
|

gu = -

&z
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L ecture-11

Basic Stability Theores, Liapunov Functions, Instability

Consider a dynamical system which satisfies

x =fx, t) x(to) = xo X ER, (4.31)

We will assume that f{x, ) satisfies the standard conditions for the existence and uniqueness

of solutions. Such conditions are, for instance, that f(x, ¢) is Lipschitz continuous with respect

to x, uniformly in #, and piecewise continuous in z. A point X €Rnis an equilibrium point of

(4.31) if

F (x*, t) = 0. Intuitively and somewhat crudely speaking, we say an equilibrium point is

locally stable if all solutions which start near x~ (meaning that the initial conditions are in a

neighborhood of x ¥) remain near x * for all time. The equilibrium point x * is said to be locally

asymptotically
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stable if x * 1s locally stable and, furthermore, all solutions starting near x  tend towards x * as

t — . We say somewhat crude because the time-varying nature of equation (4.31)
introduces all kinds of additional subtleties. Nonetheless, it is intuitive that a pendulum has a
locally stable

equilibrium point when the pendulum is hanging straight down and an unstable equilibrium
point when it is pointing straight up. If the pendulum

is damped, the stable equilibrium point is locally asymptotically stable.

By shifting the origin of the system, we may assume that the equilibrium

point of interest occurs at x* = 0. If multiple equilibrium points exist, we will need to study

the stability of each by appropriately shifting the origin.
4.1 Stability in the sense of Lyapunov

The equilibrium point x * = 0 of (4.31) is stable (in the sense of Lyapunov)

at t =t if for any € > 0 there exists a o(#p, ) > 0 such that

el <o = W@l <6 pr>g........(4.32)
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Lyapunov stability is a very mild requirement on equilibrium points. In particular, it does not
require that trajectories starting close to the origin tend to the origin asymptotically. Also,
stability is defined at a time instant #. Uniform stability is a concept which guarantees that

the equilibrium point is not losing stability. We insist that for a uniformly stable equilibrium

point x *, 0 in the Definition 4.1 not be a function of ¢, so that equation (4.32) may hold for

all #. Asymptotic stability is made precise in the following definition:
4.2 Asymptotic stability
An equilibrium point x~ = 0 of (4.31) is asymptotically stable at t = t, if

l.x "=0is stable, and

2.x =0is locally attractive; i.e., there exists d(#) such that

lim () _

@l < 6 = = 0 (4.33)

As in the previous definition, asymptotic stability is defined at ¢y. Uniform asymptotic stability

requires:

1. x “= 0 is uniformly stable, and
2.x =0 is uniformly locally attractive; i.e., there exists § independent
of ty for which equation (4.33) holds. Further, it is required that the convergence in equation

(4.33) is uniform.
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Finally, we say that an equilibrium point is unstable if it is not stable. This is less of a
tautology than it sounds and the reader should be sure he or she can negate the definition of
stability in the sense of Lyapunov to get a definition of instability. In robotics, we are almost
always interested in uniformly asymptotically stable equilibria. If we wish to move the robot
to a point, we would like to actually converge to that point, not merely remain nearby. Figure
4.7 illustrates the difference between stability in the sense of Lyapunov and asymptotic
stability. Definitions 4.1 and 4.2 are local definitions; they describe the behavior of a system

near an equilibrium point. We say an equilibrium point xis globally stable if it is stable for

all initial conditions xo € Rn. Global stability is very desirable, but in many applications it can

be difficult to achieve. We will concentrate on local stability theorems and indicate where it is

possible to extend the results to the global case. Notions

4 ., - . . ., -
N
A4
“ . 4

(a) Stable in the sense of Lyapunov
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4 A 0.4
I ! |
T [ :fﬁ_:-‘&\ ) : - T |
I 2
-4 R -0.4 1 R —1
-4 T 4 -0.4 T 0.4

(b) Asymptotically stable (c) Unstable (saddle)

Table 4.1: Summary of the basic theorem of Lyapunov.

Conditions on

Coonditions on

Clonclusions

3 | Ipdf, decrescent

4 | pdf, decrescent

Ipdf

pdf

Vix,t) —Viz,t)
1| lpdf = 0 locally Stable
2 | lpdf, decrescent | = 0 locally Uniformly stable

Uniformly asymptotically
stable
Globally uniformly

asymptotically stable

In what follows, by V we will mean T:"|n-: Flot)-

Basic theorem of Lyapunov
Let V (x, t) be a non-negative function with derivative 'V along the trajectories of the system.
1. If V (x, t) is locally positive definite and "V (x, t) <0 locally in x and for all t, then the

origin of the system is locally stable (in the sense of Lyapunov).

2. If V (x, t) is locally positive definite and decrescent, and "V (x, t) <0 locally in x and for all

t, then the origin of the system is uniformly locally stable (in the sense of Lyapunov).

3. If V (x, t) is locally positive definite and decrescent, and — "V (x, t) is locally positive
definite, then the origin of the system is uniformly locally asymptotically stable.

4. If V (x, t) is positive definite and decrescent, and — "V (x, t) is positive definite, then the

origin of the system is globally uniformly asymptotically stable.
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The conditions in the theorem are summarized in Table 4.1.

Theorm-1

Consider the system

A=flk  F@=0

Suppose there exists a scalar function v(x) which for some real number & # ¥ satisfies the
following properties for all x in the region Il = €

(@) V(x)>0; x* O that is v(x) is positive definite scalar function.

(b) V() =0

(c)V(x) has continuous partial derivatives with respect to all component of x

dv
(d) “at (i.e dv/dt is negative semi definite scalar function)

Then the system is stable at the origin.

Theorem-2

dv
If the property of (d) of theorem-1 is replaced with (d) at -0 , =0 (ie dv/dt is negative

definite scalar function),then the system is asymptotically stable.
1t is intuitively obvious since continuous v function>(0 except at x=0, satisfies the condition
dv/dt <0, we except that x will eventually approach the origin .We shall avoid the rigorous of
this theorem.
Theorem-3
If all the conditions of theorem-2 hold and in addition.
Fixl=w ar lxll—-w
Then the system is asymptotically stable in-the-large at the origin.
Instability
It may be noted that instability in a nonlinear system can be established by direct recourse to
the instability theorem of the direct method .The basic instability theorem is presented below:

Theorem-4 Consider a system

A=fl) f@=0
Suppose there a exist a scalar function W(x) which, for real number £ = 0 | satisfies the

following properties for all x in the region ll<ll = € ;
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(a) W(x)>0; x= 0
(b) W(0) =0
(c)W(x) has continuous partial derivatives with respect to all component of x

du

@ ="

Then the system is unstable at the origin.

Lecture-12

Direct Method of Liapunov & the Linear System, Methods of constructing Liapunov

functions for Non linear Systems.

Direct Method of Liapunov & the Linear System:

In case of linear systems, the direct method of liapunov provides a simple approach to
stability analysis. It must be emphasized that compared to the results presented, no new
results are obtained by the use of direct method for the stability analysis of linear systems.
However, the study of linear systems using the direct method is quite useful because it
extends our thinking to nonlinear systems.

Consider a linear autonomous system described by the state equation
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The linear system is asymptotically stable in-the-large at the origin if and only if
given any symmetric, positive definite matrix Q, there exists a symmetric positive definite
matrix P which is the unique solution

AP+PA=-Q ... 13.10
Proof
To prove the sufficiency of the result of above theorem, let us assume that a symmetric
positive definite matrix P exists which is the unique solution of eqn.(13.11). Consider the

scalar function.

V(x) =x" Px
Note that VX)>0forx#* 0
V(0)=0

And
The time derivate of V(x) is
V(x)=% TPy +x"P¥
Using eqns. (13.9) and (13.10) we get
V(x) = x"ATPx +x"PAX
=x"(ATP + PA)x
=-x"Qx

Since Q is positive definite, V(x) is negative definite. Norm of x may be defined as

Then 11 = (P
V(X) =I£1#
V(X) = @ ag Xl =
The system is therefore asymptotically stable in-the large at the origin.
In order to show that the result is also necessary, suppose that the system is asymptotically

stable and P is negative definite, consider the scalar function

Therefore V(X)) =X T PXo e 13.11
U(x)= -7 Py+ x TPl

=XTgx
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>0

There is contradiction since V(x) given by eqn. (13.11) satisfies instability theorem.

Thus the conditions for the positive definiteness of P are necessary and sufficient for
asymptotic stability of the system of eqn. (13.9).
Methods of constructing Liapunov functions for Non linear Systems.
As has been said earlier ,the liapunov theorems give only sufficient conditions on system
stability and furthermore there is no unique way of constructing a liapunov function except in
the case of linear systems where a liapunov function can always be constructed and both
necessary and sufficient conditions Established .Because of this draw back a host of methods
have become available in literature and many refinements have been suggested to enlarge the
region in which the system is found to be stable. since this treatise is meant as a first exposure
of the student to the liapunov direct method, only two of the relatively simpler techniques of
constructing a liapunov’s function would be advanced here.
Krasovskiis method

Consider a system

&= fEuf@)=0
Define a liapunov function as
V= fTPf

Where P=a symmetric positive definite matrix.

Now

U= £T8 4 FTEF

. 'nr
f=ar£.-:fx
..—fr?L =Jf

[dfy  df dfy]
T B
ifs dfy  dfi
d, ety iy
dfy dfy  dfy

J=lax, dxg @xrl is jacobian matrix

Substituting [ in eqn (13.13), we have
V=fI'Ff + FYFIf
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=fTJTP+E )¢t
Let Q=/"P+PJ
Since V is positive definite, for the system to be asymptotically stable, Q should be negative

definite. If in addition,t’ @3 — % as IAl = ®.the system is asymptotically stable in-the-

large.
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